Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:definetti

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:definetti [2026/02/03 14:06]
rdouc [Proof]
world:definetti [2026/02/03 19:01] (current)
rdouc
Line 1: Line 1:
-{{page>:​defs}}+on{{page>:​defs}}
  
  
Line 39: Line 39:
 \frac1n\sum_{i=1}^n h(X_i)=\mathbb{E}[h(X_1)\mid\mathcal{G}_n],​ \quad a.s.  \frac1n\sum_{i=1}^n h(X_i)=\mathbb{E}[h(X_1)\mid\mathcal{G}_n],​ \quad a.s. 
 $$ $$
-    * By the **reverse martingale convergence** theorem,+    * By the **reverse martingale convergence** theorem ​(see for example [[world:​forward-downward-martingale|Upcrossing Inequality and Martingale Convergence]]),
 $$ $$
 \frac1n\sum_{i=1}^n h(X_i)\xrightarrow{\mathrm{a.s.}}\mathbb{E}[h(X_1)\mid\mathcal{G}_\infty]. \frac1n\sum_{i=1}^n h(X_i)\xrightarrow{\mathrm{a.s.}}\mathbb{E}[h(X_1)\mid\mathcal{G}_\infty].
Line 49: Line 49:
 \mathbb{E}[f(X_1,​\ldots,​X_k)\mid\mathcal{G}_\infty] \mathbb{E}[f(X_1,​\ldots,​X_k)\mid\mathcal{G}_\infty]
 =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)} =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)}
-\sum_{\substack{1\le i_1 \le n,\ldots,1 \le i_k\le n\\ i_j\neq i_\ell}}+\sum_{\substack{i_{1:k} \in [1:​n]^k ​\le n,\ldots,1 \le i_k\le n\\ i_j\neq i_\ell}}
 f(X_{i_1},​\ldots,​X_{i_k}). f(X_{i_1},​\ldots,​X_{i_k}).
 $$ $$
Line 56: Line 56:
 \frac1{n(n-1)\cdots(n-k+1)} \frac1{n(n-1)\cdots(n-k+1)}
 \sum_{\substack{1\le i_1,​\ldots,​i_k\le n\\ i_j\neq i_\ell}} \sum_{\substack{1\le i_1,​\ldots,​i_k\le n\\ i_j\neq i_\ell}}
-f(X_{i_1},​\ldots,​X_{i_k}) + 0\lr{\frac1n} = \frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},​\ldots,​X_{i_k}).+f(X_{i_1},​\ldots,​X_{i_k}) + O\lr{\frac1n} = \frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},​\ldots,​X_{i_k}).
 $$ $$
     * Hence, for product functions $f(x_1,​\ldots,​x_k)=f_1(x_1)\cdots f_k(x_k)$,     * Hence, for product functions $f(x_1,​\ldots,​x_k)=f_1(x_1)\cdots f_k(x_k)$,
world/definetti.1770123975.txt.gz · Last modified: 2026/02/03 14:06 by rdouc