Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:definetti

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:definetti [2026/02/03 12:13]
rdouc [Proof]
world:definetti [2026/02/03 19:01] (current)
rdouc
Line 1: Line 1:
 +on{{page>:​defs}}
 +
 +
 ====== De Finetti'​s Representation Theorem for Exchangeable Random Elements ====== ====== De Finetti'​s Representation Theorem for Exchangeable Random Elements ======
  
Line 5: Line 8:
 <WRAP center round tip 80%> <WRAP center round tip 80%>
 **De Finetti'​s Theorem:​**  ​ **De Finetti'​s Theorem:​**  ​
-Let $(X_i)_{i\in\mathbb{N}}$ be a family of **exchangeable random elements** defined on a measurable space $(\mathsf{X},​\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{F}_\infty$ such that, **conditionally on $\mathcal{F}_\infty$**,​ the random variables $(X_i)_{i\in\mathbb{N}}$ are **independent and identically distributed (i.i.d.)**.+Let $(X_i)_{i\in\mathbb{N}}$ be a family of **exchangeable random elements** defined on a measurable space $(\mathsf{X},​\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{G}_\infty$ such that, **conditionally on $\mathcal{G}_\infty$**,​ the random variables $(X_i)_{i\in\mathbb{N}}$ are **independent and identically distributed (i.i.d.)**.
  
 </​WRAP>​ </​WRAP>​
  
 +The proof is based on the paper "Uses of exchangeability"​ by J. F. Kingman [[https://​projecteuclid.org/​journalArticle/​Download?​urlId=10.1214%2Faop%2F1176995566|Click here to see the paper]]. ​
 ===== Proof ===== ===== Proof =====
 Without loss of generality, we model $(X_i)_{i\in\mathbb{N}}$ as the coordinate projections on the canonical probability space $(\mathsf{X}^{\mathbb{N}},​\mathcal{X}^{\otimes\mathbb{N}},​\mathbb{P})$. We proceed as follows: Without loss of generality, we model $(X_i)_{i\in\mathbb{N}}$ as the coordinate projections on the canonical probability space $(\mathsf{X}^{\mathbb{N}},​\mathcal{X}^{\otimes\mathbb{N}},​\mathbb{P})$. We proceed as follows:
  
 1. **Reverse filtration construction:​**  ​ 1. **Reverse filtration construction:​**  ​
-    * For each $n\in\mathbb{N}$,​ let $\mathcal{F}_n$ be the $\sigma$-field generated by all measurable functions $f:​\mathsf{X}^{\mathbb{N}}\to\mathbb{R}$ invariant under any permutation of the first $n$ coordinates,​ i.e. for any permutation $\pi$ of $\{1,​\ldots,​n\}$ and any $x\in\mathsf{X}^{\mathbb{N}}$,​+    * For each $n\in\mathbb{N}$,​ let $\mathcal{G}_n$ be the $\sigma$-field generated by all measurable functions $f:​\mathsf{X}^{\mathbb{N}}\to\mathbb{R}$ invariant under any permutation of the first $n$ coordinates,​ i.e. for any permutation $\pi$ of $\{1,​\ldots,​n\}$ and any $x\in\mathsf{X}^{\mathbb{N}}$,​
 $$ $$
 f(x_1,​\ldots,​x_n,​x_{n+1},​\ldots)=f(x_{\pi(1)},​\ldots,​x_{\pi(n)},​x_{n+1},​\ldots). f(x_1,​\ldots,​x_n,​x_{n+1},​\ldots)=f(x_{\pi(1)},​\ldots,​x_{\pi(n)},​x_{n+1},​\ldots).
 $$ $$
-    * $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a reverse filtration with $\mathcal{F}_n\supseteq\mathcal{F}_{n+1}$ and+    * $(\mathcal{G}_n)_{n\in\mathbb{N}}$ is a reverse filtration with $\mathcal{G}_n\supseteq\mathcal{G}_{n+1}$ and
 $$ $$
-\mathcal{F}_\infty=\bigcap_{n\in\mathbb{N}}\mathcal{F}_n.+\mathcal{G}_\infty=\bigcap_{n\in\mathbb{N}}\mathcal{G}_n.
 $$ $$
-    * $\mathcal{F}_\infty$ is generated by all functions invariant under any finite permutation of coordinates.+    * $\mathcal{G}_\infty$ is generated by all functions invariant under any finite permutation of coordinates.
  
 2. **Conditional expectation and empirical averages:​**  ​ 2. **Conditional expectation and empirical averages:​**  ​
-    * For any bounded measurable $h:​\mathsf{X}\to\mathbb{R}$,​ the empirical average $\frac1n\sum_{i=1}^n h(X_i)$ is $\mathcal{F}_n$-measurable. +    * For any bounded measurable $h:​\mathsf{X}\to\mathbb{R}$,​ the empirical average $\frac1n\sum_{i=1}^n h(X_i)$ is $\mathcal{G}_n$-measurable. 
-    * For any $A\in\mathcal{F}_n$, exchangeability implies+    * For any $A\in\mathcal{G}_n$, exchangeability implies
 $$ $$
 \mathbb{E}\!\left[\left(\frac1n\sum_{i=1}^n h(X_i)\right)\mathbf1_A\right] \mathbb{E}\!\left[\left(\frac1n\sum_{i=1}^n h(X_i)\right)\mathbf1_A\right]
 +=\frac1n\sum_{i=1}^n \mathbb{E}\!\left[\left( h(X_i)\right)\mathbf1_A\right]
 =\mathbb{E}[h(X_1)\mathbf1_A]. =\mathbb{E}[h(X_1)\mathbf1_A].
 $$ $$
-    * Hence+    * The two previous item show the amazing formula: ​
 $$ $$
-\frac1n\sum_{i=1}^n h(X_i)=\mathbb{E}[h(X_1)\mid\mathcal{F}_n], \quad a.s. +\frac1n\sum_{i=1}^n h(X_i)=\mathbb{E}[h(X_1)\mid\mathcal{G}_n], \quad a.s. 
 $$ $$
-    * By the reverse martingale convergence theorem,+    * By the **reverse martingale convergence** theorem ​(see for example [[world:​forward-downward-martingale|Upcrossing Inequality and Martingale Convergence]]),
 $$ $$
-\frac1n\sum_{i=1}^n h(X_i)\xrightarrow{\mathrm{a.s.}}\mathbb{E}[h(X_1)\mid\mathcal{F}_\infty].+\frac1n\sum_{i=1}^n h(X_i)\xrightarrow{\mathrm{a.s.}}\mathbb{E}[h(X_1)\mid\mathcal{G}_\infty].
 $$ $$
  
Line 42: Line 47:
     * For bounded measurable $f:​\mathsf{X}^k\to\mathbb{R}$,​     * For bounded measurable $f:​\mathsf{X}^k\to\mathbb{R}$,​
 $$ $$
-\mathbb{E}[f(X_1,​\ldots,​X_k)\mid\mathcal{F}_\infty]+\mathbb{E}[f(X_1,​\ldots,​X_k)\mid\mathcal{G}_\infty]
 =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)} =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)}
-\sum_{\substack{1\le ​i_1,​\ldots,​i_k\le n\\ i_j\neq i_\ell}}+\sum_{\substack{i_{1:k} \in [1:​n]^k ​\le n,\ldots,1 \le i_k\le n\\ i_j\neq i_\ell}}
 f(X_{i_1},​\ldots,​X_{i_k}). f(X_{i_1},​\ldots,​X_{i_k}).
 $$ $$
     * But we have     * But we have
 $$ $$
-\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)}+\frac1{n(n-1)\cdots(n-k+1)}
 \sum_{\substack{1\le i_1,​\ldots,​i_k\le n\\ i_j\neq i_\ell}} \sum_{\substack{1\le i_1,​\ldots,​i_k\le n\\ i_j\neq i_\ell}}
-f(X_{i_1},​\ldots,​X_{i_k}) ​\lim_{n\to\infty}\frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},​\ldots,​X_{i_k}).+f(X_{i_1},​\ldots,​X_{i_k}) ​+ O\lr{\frac1n\frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},​\ldots,​X_{i_k}).
 $$ $$
     * Hence, for product functions $f(x_1,​\ldots,​x_k)=f_1(x_1)\cdots f_k(x_k)$,     * Hence, for product functions $f(x_1,​\ldots,​x_k)=f_1(x_1)\cdots f_k(x_k)$,
 $$ $$
-\mathbb{E}[f_1(X_1)\cdots f_k(X_k)\mid\mathcal{F}_\infty] +\mathbb{E}[f_1(X_1)\cdots f_k(X_k)\mid\mathcal{G}_\infty] 
-=\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{F}_\infty].+=\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{G}_\infty].
 $$ $$
-    * Thus, conditionally on $\mathcal{F}_\infty$, $(X_i)$ are independent.+    * Thus, conditionally on $\mathcal{G}_\infty$, $(X_i)$ are independent.
  
  
world/definetti.1770117195.txt.gz · Last modified: 2026/02/03 12:13 by rdouc