Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:de-finetti

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:de-finetti [2026/02/07 10:33]
rdouc
world:de-finetti [2026/02/07 12:44] (current)
rdouc
Line 8: Line 8:
 <WRAP center round tip 80%> <WRAP center round tip 80%>
 **De Finetti'​s Theorem:​**  ​ **De Finetti'​s Theorem:​**  ​
-Let $(X_i)_{i\in\mathbb{N}}$ be a family of **exchangeable random elements** taking ​balues ​on a measurable space $(\mathsf{X},​\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{G}_\infty$ such that, **conditionally on $\mathcal{G}_\infty$**,​ the random variables $(X_i)_{i\in\mathbb{N}}$ are **independent and identically distributed (i.i.d.)**.+Let $(X_i)_{i\in\mathbb{N}}$ be a family of **exchangeable random elements** taking ​values ​on a measurable space $(\mathsf{X},​\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{G}_\infty$ such that, **conditionally on $\mathcal{G}_\infty$**,​ the random variables $(X_i)_{i\in\mathbb{N}}$ are **independent and identically distributed (i.i.d.)**.
  
 </​WRAP>​ </​WRAP>​
Line 63: Line 63:
 =\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{G}_\infty]. =\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{G}_\infty].
 $$ $$
-    * Thus, conditionally on $\mathcal{G}_\infty$,​ $(X_i)$ are independent. $\square$+    * Thus, conditionally on $\mathcal{G}_\infty$,​ $(X_i)$ are independent. $\blacksquare$
  
 <WRAP center round todo 80%> <WRAP center round todo 80%>
Line 75: Line 75:
  
  
-==== Comments: ​convergence ​of Empirical Averages ​for i.i.d. Random Variables ====+==== Comments: ​Another proof of the Law of Large Numbers ​for i.i.d. Random Variables ====
  
 The previous approach allows to prove the strong law of large numbers (for a proof of the LLN using only the dominated convergence theorem, ​ [[world:​lln| click here]]) The previous approach allows to prove the strong law of large numbers (for a proof of the LLN using only the dominated convergence theorem, ​ [[world:​lln| click here]])
world/de-finetti.1770456814.txt.gz · Last modified: 2026/02/07 10:33 by rdouc