Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:de-finetti

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:de-finetti [2026/02/05 15:08]
rdouc
world:de-finetti [2026/02/07 12:44] (current)
rdouc
Line 1: Line 1:
-on{{page>:​defs}}+{{page>:​defs}}
  
  
Line 8: Line 8:
 <WRAP center round tip 80%> <WRAP center round tip 80%>
 **De Finetti'​s Theorem:​**  ​ **De Finetti'​s Theorem:​**  ​
-Let $(X_i)_{i\in\mathbb{N}}$ be a family of **exchangeable random elements** ​defined ​on a measurable space $(\mathsf{X},​\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{G}_\infty$ such that, **conditionally on $\mathcal{G}_\infty$**,​ the random variables $(X_i)_{i\in\mathbb{N}}$ are **independent and identically distributed (i.i.d.)**.+Let $(X_i)_{i\in\mathbb{N}}$ be a family of **exchangeable random elements** ​taking values ​on a measurable space $(\mathsf{X},​\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{G}_\infty$ such that, **conditionally on $\mathcal{G}_\infty$**,​ the random variables $(X_i)_{i\in\mathbb{N}}$ are **independent and identically distributed (i.i.d.)**.
  
 </​WRAP>​ </​WRAP>​
Line 49: Line 49:
 \mathbb{E}[f(X_1,​\ldots,​X_k)\mid\mathcal{G}_\infty] \mathbb{E}[f(X_1,​\ldots,​X_k)\mid\mathcal{G}_\infty]
 =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)} =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)}
-\sum_{\substack{i_{1:​k} \in [1:​n]^k ​\le n,\ldots,1 \le i_k\le n\\ i_j\neq i_\ell}}+\sum_{\substack{i_{1:​k} \in [1:n]^k\\ i_j\neq i_\ell}}
 f(X_{i_1},​\ldots,​X_{i_k}). f(X_{i_1},​\ldots,​X_{i_k}).
 $$ $$
Line 55: Line 55:
 $$ $$
 \frac1{n(n-1)\cdots(n-k+1)} \frac1{n(n-1)\cdots(n-k+1)}
-\sum_{\substack{1\le i_1,​\ldots,​i_k\le ​n\\ i_j\neq i_\ell}}+\sum_{\substack{i_{1:k} \in [1:n]^k\\ i_j\neq i_\ell}}
 f(X_{i_1},​\ldots,​X_{i_k}) + O\lr{\frac1n} = \frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},​\ldots,​X_{i_k}). f(X_{i_1},​\ldots,​X_{i_k}) + O\lr{\frac1n} = \frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},​\ldots,​X_{i_k}).
 $$ $$
Line 63: Line 63:
 =\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{G}_\infty]. =\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{G}_\infty].
 $$ $$
-    * Thus, conditionally on $\mathcal{G}_\infty$,​ $(X_i)$ are independent.+    * Thus, conditionally on $\mathcal{G}_\infty$,​ $(X_i)$ are independent. ​$\blacksquare$
  
-==== Comments: ​convergence ​of Empirical Averages ​for i.i.d. Random Variables ====+<WRAP center round todo 80%> 
 +If $(X_i)$ are real-valued random variables, then, since the distribution of any random variable $X$ is completely determined by the values $\mathbb{P}(X \le x)$ for $x \in \mathbb{Q}$,​ we can replace $\mathcal{G}_\infty$ with the $\sigma$-field generated by the countable family of random variables 
 +\[ 
 +\left\{ \mathbb{E}\big[\mathbf{1}_{\{X_1 \le x\}} \mid \mathcal{G}_\infty \big] : x \in \mathbb{Q} \right\}. 
 +\] 
 +It follows that there exists a random variable $S$ such that, conditional on $S$, the sequence $(X_i)$ is independent and identically distributed.  
 + 
 +</​WRAP>​ 
 + 
 + 
 +==== Comments: ​Another proof of the Law of Large Numbers ​for i.i.d. Random Variables ====
  
-The previous approach allows to prove the LLN+The previous approach allows to prove the strong law of large numbers (for a proof of the LLN using only the dominated convergence theorem, ​ [[world:​lln| click here]])
  
 <WRAP center round tip 80%> <WRAP center round tip 80%>
Line 77: Line 87:
  
  
-**Reverse Martingale Convergence Theorem:** +**Proof:** 
-By the **reverse martingale convergence theorem**, the empirical average converges almost surely to the conditional expectation with respect to the tail σ-field \(\mathcal{G}_\infty\):​+By the **reverse martingale convergence theorem** ​(see [[world:​forward-downward-martingale|Upcrossing Inequality and Martingale Convergence]]), the empirical average converges almost surely to the conditional expectation with respect to the tail σ-field \(\mathcal{G}_\infty\):​
 \[ \[
 \frac{1}{n} \sum_{i=1}^n X_i = \mathbb{E}[X_1|\mathcal{G}_n] \xrightarrow{a.s.} \mathbb{E}[X_1|\mathcal{G}_\infty]. \frac{1}{n} \sum_{i=1}^n X_i = \mathbb{E}[X_1|\mathcal{G}_n] \xrightarrow{a.s.} \mathbb{E}[X_1|\mathcal{G}_\infty].
 \] \]
  
-**Hewitt-Savage 0-1 Law:** 
 The [[world:​hewitt-savage|Hewitt-Savage 0-1 Law]] states that any \(\mathcal{G}_\infty\)-measurable random variable is almost surely constant. Consequently,​ the conditional expectation \(\mathbb{E}[X_1|\mathcal{G}_\infty]\) is almost surely equal to its unconditional expectation:​ The [[world:​hewitt-savage|Hewitt-Savage 0-1 Law]] states that any \(\mathcal{G}_\infty\)-measurable random variable is almost surely constant. Consequently,​ the conditional expectation \(\mathbb{E}[X_1|\mathcal{G}_\infty]\) is almost surely equal to its unconditional expectation:​
 \[ \[
Line 89: Line 98:
 \] \]
  
-**Conclusion:​** 
 Thus, the empirical average converges almost surely to the theoretical expectation:​ Thus, the empirical average converges almost surely to the theoretical expectation:​
 \[ \[
world/de-finetti.1770300501.txt.gz · Last modified: 2026/02/05 15:08 by rdouc