Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:coupling

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:coupling [2024/06/14 23:37]
rdouc
world:coupling [2024/06/20 15:02] (current)
rdouc ↷ Page moved from yazid:coupling to world:coupling
Line 7: Line 7:
 We draw jointly the couple of random variables $(\tilde Y,Y)$ according to the following procedure: ​ We draw jointly the couple of random variables $(\tilde Y,Y)$ according to the following procedure: ​
  
-  * Draw \(\tilde Y \sim \tilde \pi\) +  * Draw \(\tilde Y \sim \tilde \pi\) 
-  * Draw a candidate ​\(X \sim \pi\) and accept the candidate ​$Y=X$ with probability \(1 -\alpha(X,​\tilde Y)\) with \(\alpha(x,​y)=\frac{\pi(y) \tilde \pi(x)}{\pi(x) \tilde \pi(y)} \wedge 1\). Otherwise ​reject the candidate and set \(Y=\tilde Y\). +  * Draw \(X \sim \pi\) and set $Y=X$ with probability \(1 -\alpha(X,​\tilde Y)\) where \(\alpha(x,​y)=\frac{\pi(y) \tilde \pi(x)}{\pi(x) \tilde \pi(y)} \wedge 1\). Otherwise set \(Y=\tilde Y\). 
  
 <WRAP center round tip 80%> ​ **Proposition. ** $(\tilde Y,Y)$ is a coupling of $(\tilde \pi,​\pi)$. ​   <WRAP center round tip 80%> ​ **Proposition. ** $(\tilde Y,Y)$ is a coupling of $(\tilde \pi,​\pi)$. ​  
Line 14: Line 14:
  
 <WRAP center round important 80%> <WRAP center round important 80%>
-  * What is nice is that we are able to couple these random variables whereas their densities are known only up to a multiplicative constant. I  wonder if it is better ​to couple in that way: $\pi(y) \propto Q(x,\rmd y) \alpha_{MH}(x,​y)$ and $\tilde \pi(y) \propto Q(x',​\rmd y) \alpha_{MH}(x',​y)$. These two densities are known only up to multiplicative constant. Up to some tricks, we can deduce a way of coupling two MH starting from different initial distributions?​ Can we compare it to the coupling of Pierre Jacob et al.? +  * What is nice is that we are able to couple these random variables whereas their densities are known only up to a multiplicative constant. I  wonder if it is interesting ​to couple in that way: $\pi(y) \propto Q(x,\rmd y) \alpha_{MH}(x,​y)$ and $\tilde \pi(y) \propto Q(x',​\rmd y) \alpha_{MH}(x',​y)$. Up to some tricks, ​can we deduce a way of coupling two MH starting from different initial distributions, maybe with delayed coupling? Can we compare it to the coupling of Pierre Jacob et al.? 
-  * Moreover, if we look at the the problem ​we have started ​today, if $(\tilde X_0,​X_0)=\tilde \pi \otimes \pi$ then, $(\tilde X_1,X_1)$ is a coupling of $(\tilde \pi,\pi)$, no?   +  * Moreover, if we look at the problem today, if $(\tilde X_0,​X_0)=\tilde \pi \otimes \pi$ then, $(\tilde X_1,X_1)$ is a coupling of $(\tilde \pi,\pi)$, no?   
 </​WRAP>​ </​WRAP>​
  
Line 27: Line 27:
  
  
-Indeed, write: ​+Indeed, write, using the detailed balance condition in the second line 
 \begin{align*} \begin{align*}
 \int \tilde \pi(\rmd \tilde y) K(\tilde y,\rmd y) f(y)&= \int \pi(\rmd y) f(y) \lrcb{\int \lrb{1-\alpha(y,​\tilde y)}\tilde \pi(\rmd \tilde y)} + \int \tilde \pi(y) f(y)\rmd y \int \pi(x) \alpha(x,y) \rmd x \\  \int \tilde \pi(\rmd \tilde y) K(\tilde y,\rmd y) f(y)&= \int \pi(\rmd y) f(y) \lrcb{\int \lrb{1-\alpha(y,​\tilde y)}\tilde \pi(\rmd \tilde y)} + \int \tilde \pi(y) f(y)\rmd y \int \pi(x) \alpha(x,y) \rmd x \\ 
 & = \int \pi(\rmd y) f(y) \lrcb{\int \lrb{1-\alpha(y,​\tilde y)}\tilde \pi(\rmd \tilde y)}  + \int  f(y)  \rmd y \lrcb{\int \underbrace{\tilde \pi(y) \pi(x) \alpha(x,​y)}_{\tilde \pi(x) \pi(y) \alpha(y,​x)} ​ \rmd x} \\  & = \int \pi(\rmd y) f(y) \lrcb{\int \lrb{1-\alpha(y,​\tilde y)}\tilde \pi(\rmd \tilde y)}  + \int  f(y)  \rmd y \lrcb{\int \underbrace{\tilde \pi(y) \pi(x) \alpha(x,​y)}_{\tilde \pi(x) \pi(y) \alpha(y,​x)} ​ \rmd x} \\ 
 & = \int \pi(\rmd y) f(y) \lrcb{\int \lrb{1-\alpha(y,​\tilde y)}\tilde \pi(\rmd \tilde y)}  + \int  f(y)  \rmd y \lrcb{\int \tilde \pi(x) \pi(y) \alpha(y,​x) ​ \rmd x}\\  & = \int \pi(\rmd y) f(y) \lrcb{\int \lrb{1-\alpha(y,​\tilde y)}\tilde \pi(\rmd \tilde y)}  + \int  f(y)  \rmd y \lrcb{\int \tilde \pi(x) \pi(y) \alpha(y,​x) ​ \rmd x}\\ 
-& = \int \pi(\rmd y) f(y) \lrcb{\int ​\lrb{1-\alpha(y,​\tilde y)}\tilde \pi(\rmd \tilde y)}  + \int  f(y)  \pi(\rmd y) \lrcb{\int ​  ​\alpha(y,​x) ​ \tilde \pi(\rmd x)} \\ +& = \int \pi(\rmd y) f(y) \lrcb{1-\int \alpha(y,​\tilde y)\tilde \pi(\rmd \tilde y)}  + \int  f(y)  \pi(\rmd y) \lrcb{\int ​  ​\alpha(y,​x) ​ \tilde \pi(\rmd x)} \\ 
 & = \pi(f) & = \pi(f)
 \end{align*} \end{align*}
Line 40: Line 40:
  
  
-The probability of coupling is given by: +The coupling ​probability ​is given by: 
 $$ $$
-\PP(\tilde Y=Y)=\int \tilde \pi(\rmd \tilde y) \pi(\rmd ​y) \alpha (y,\tilde y)=\int \lrb{\pi(x) \tilde \pi(\tilde y) \wedge \pi(\tilde y) \tilde \pi(x)} \rmd x \rmd \tilde y+\PP(\tilde Y=Y)=\int \tilde \pi(\rmd \tilde y) \pi(\rmd ​x) \alpha (x,\tilde y)=\int \lrb{\pi(x) \tilde \pi(\tilde y) \wedge \pi(\tilde y) \tilde \pi(x)} \rmd x \rmd \tilde y
 $$ $$
  
 <WRAP center round tip 80%> <WRAP center round tip 80%>
-**Question**:​ we know that $\PP(\tilde Y=Y) \leq \int \pi(x) \wedge \tilde \pi(\tilde ​x) \rmd x$. But I can't see how to prove +**Question**:​ we know that $\PP(\tilde Y=Y) \leq \int \pi(x) \wedge \tilde \pi(x) \rmd x$. But I can't see how to prove 
 $$ $$
 \int \lrb{\pi(x) \tilde \pi(\tilde y) \wedge \pi(\tilde y) \tilde \pi(x)} \rmd x \rmd \tilde y \leq \int \pi(x) \wedge \tilde \pi(\tilde x) \rmd x \int \lrb{\pi(x) \tilde \pi(\tilde y) \wedge \pi(\tilde y) \tilde \pi(x)} \rmd x \rmd \tilde y \leq \int \pi(x) \wedge \tilde \pi(\tilde x) \rmd x
world/coupling.1718401056.txt.gz · Last modified: 2024/06/14 23:37 by rdouc