This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
world:approximation-lemma [2026/02/05 08:01] rdouc |
world:approximation-lemma [2026/02/05 08:02] (current) rdouc ↷ Page moved from mynotes:approximation-lemma to world:approximation-lemma |
||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | {{page>:defs}} | ||
| - | |||
| - | ====== Approximation Lemma ====== | ||
| - | |||
| - | Let $(\Xset^\nset,\Xsigma^{\otimes \nset}, \PP)$ be a probability space. We write $\mathcal{F}_k=\sigma(X_{1:k})$ where $X_i$ is the coordinate projection on the $i$-th component: $X_i(\omega)=\omega_i$ where $\omega \in \rset^\nset$. | ||
| - | <WRAP center round tip 80%> | ||
| - | **Lemma**. Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies ** the approximation property**, that is: | ||
| - | |||
| - | For every $\delta>0$, there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that | ||
| - | $$ | ||
| - | \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta. | ||
| - | $$ | ||
| - | |||
| - | </WRAP> | ||
| - | |||
| - | ===== Proof ===== | ||
| - | |||
| - | |||
| - | The proof is a standard application of the **monotone class theorem**. | ||
| - | |||
| - | Define $\mathcal{M}$ as the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ for which the above **approximation property** (defined in the Lemma) holds. | ||
| - | |||
| - | We verify that $\mathcal{M}$ is a monotone class. | ||
| - | |||
| - | * **Stability under set differences.** | ||
| - | Let $A_0,A_1\in\mathcal{M}$ with $A_0\subset A_1$. Then we will show $A_1\setminus A_0\in\mathcal{M}$. | ||
| - | |||
| - | Indeed, for any sets $A_0,A_1,B_0,B_1$, the following identity holds: | ||
| - | $$ | ||
| - | \mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0} | ||
| - | =\mathbb{1}_{A_1}\mathbb{1}_{A_0^c}-\mathbb{1}_{B_1}\mathbb{1}_{B_0^c} | ||
| - | =\mathbb{1}_{A_1}(\mathbb{1}_{A_0^c}-\mathbb{1}_{B_0^c}) | ||
| - | +(\mathbb{1}_{A_1}-\mathbb{1}_{B_1})\mathbb{1}_{B_0^c}. | ||
| - | $$ | ||
| - | |||
| - | Taking expectations and absolute values yields | ||
| - | $$ | ||
| - | \mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big] | ||
| - | \leq | ||
| - | \mathbb{E}\big[|\mathbb{1}_{A_0}-\mathbb{1}_{B_0}|\big] | ||
| - | + | ||
| - | \mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big]. | ||
| - | $$ | ||
| - | When $A_0,A_1\in\mathcal{M}$, both terms on the right-hand side can be made arbitrarily small. So, the approximation property also holds for $A_1\setminus A_0$. | ||
| - | |||
| - | * **Stability under increasing limits.** | ||
| - | Let $(A_n)_{n\geq0}$ be an increasing sequence of sets in $\mathcal{M}$, and define | ||
| - | $$ | ||
| - | A=\bigcup_{n\geq0}A_n. | ||
| - | $$ | ||
| - | |||
| - | Then using the triangular inequality for any set $B$, $\PE[|\mathbb{1}_A-\mathbb{1}_B|] \leq \PE[|\mathbb{1}_A-\mathbb{1}_{A_n}|] + \PE[|\mathbb{1}_{A_n}-\mathbb{1}_B|]$, we can easily deduce that $A$ also belongs to $\mathcal{M}$ provided that $A_n\in \mathcal{M}$ for any $n\in \nset$. | ||
| - | |||
| - | Since $\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$, it contains | ||
| - | $$ | ||
| - | \sigma\Big(\bigcup_{k\geq0}\mathcal{F}_k\Big)=\mathcal{X}^{\otimes\mathbb{N}}. | ||
| - | $$ | ||
| - | This completes the proof. | ||
| - | |||
| - | |||
| {{page>:defs}} | {{page>:defs}} | ||