Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:approximation-lemma

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:approximation-lemma [2026/02/05 08:01]
rdouc
world:approximation-lemma [2026/02/05 08:02] (current)
rdouc ↷ Page moved from mynotes:approximation-lemma to world:approximation-lemma
Line 1: Line 1:
-{{page>:​defs}} 
- 
-====== Approximation Lemma ====== 
- 
-Let $(\Xset^\nset,​\Xsigma^{\otimes \nset}, \PP)$ be a probability space. We write $\mathcal{F}_k=\sigma(X_{1:​k})$ where $X_i$ is the coordinate projection on the $i$-th component: $X_i(\omega)=\omega_i$ where $\omega \in \rset^\nset$. ​ 
-<WRAP center round tip 80%> 
-**Lemma**. Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies ** the approximation property**, that is:  
- 
-For every $\delta>​0$,​ there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that 
-$$ 
-\mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta. 
-$$ 
- 
-</​WRAP>​ 
- 
-===== Proof ===== 
- 
- 
-The proof is a standard application of the **monotone class theorem**. 
- 
-Define $\mathcal{M}$ as the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ for which the above **approximation property** (defined in the Lemma) holds. 
- 
-We verify that $\mathcal{M}$ is a monotone class. 
- 
-  * **Stability under set differences.**  ​ 
-Let $A_0,​A_1\in\mathcal{M}$ with $A_0\subset A_1$. Then we will show $A_1\setminus A_0\in\mathcal{M}$. 
- 
-Indeed, for any sets $A_0,​A_1,​B_0,​B_1$,​ the following identity holds: 
-$$ 
-\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0} 
-=\mathbb{1}_{A_1}\mathbb{1}_{A_0^c}-\mathbb{1}_{B_1}\mathbb{1}_{B_0^c} 
-=\mathbb{1}_{A_1}(\mathbb{1}_{A_0^c}-\mathbb{1}_{B_0^c}) 
-+(\mathbb{1}_{A_1}-\mathbb{1}_{B_1})\mathbb{1}_{B_0^c}. 
-$$ 
- 
-Taking expectations and absolute values yields 
-$$ 
-\mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big] 
-\leq 
-\mathbb{E}\big[|\mathbb{1}_{A_0}-\mathbb{1}_{B_0}|\big] 
-+ 
-\mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big]. 
-$$ 
-When $A_0,​A_1\in\mathcal{M}$,​ both terms on the right-hand side can be made arbitrarily small. So, the approximation property also holds for $A_1\setminus A_0$. 
- 
-  * **Stability under increasing limits.**  ​ 
-Let $(A_n)_{n\geq0}$ be an increasing sequence of sets in $\mathcal{M}$,​ and define 
-$$ 
-A=\bigcup_{n\geq0}A_n. 
-$$ 
- 
-Then using the triangular inequality for any set $B$, $\PE[|\mathbb{1}_A-\mathbb{1}_B|] \leq \PE[|\mathbb{1}_A-\mathbb{1}_{A_n}|] + \PE[|\mathbb{1}_{A_n}-\mathbb{1}_B|]$,​ we can easily deduce that $A$ also belongs to $\mathcal{M}$ provided that $A_n\in \mathcal{M}$ for any $n\in \nset$. 
- 
-Since $\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$,​ it contains 
-$$ 
-\sigma\Big(\bigcup_{k\geq0}\mathcal{F}_k\Big)=\mathcal{X}^{\otimes\mathbb{N}}. 
-$$ 
-This completes the proof. 
- 
- 
 {{page>:​defs}} {{page>:​defs}}
  
world/approximation-lemma.1770274875.txt.gz · Last modified: 2026/02/05 08:01 by rdouc