Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:approximation-lemma

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:approximation-lemma [2026/02/05 07:59]
rdouc
world:approximation-lemma [2026/02/05 08:02] (current)
rdouc ↷ Page moved from mynotes:approximation-lemma to world:approximation-lemma
Line 3: Line 3:
 ====== Approximation Lemma ====== ====== Approximation Lemma ======
  
-Let $(\Xset^\nset,​\Xsigma^{\otimes \nset}, \PP)$ be a probability space. ​We write $\mathcal{F}_k=\sigma(X_{1:​k})$ where $X_i$ is the coordinate projection on the $i$-th component$X_i(\omega)=\omega_i$ ​where $\omega \in \rset^\nset$. +Let $(\Xset^{\mathbb{N}},​\Xsigma^{\otimes\mathbb{N}},\mathbb{P})$ be a probability space. ​  
 +For each $k\in\mathbb{N}$,​ define 
 +$$ 
 +\mathcal{F}_k=\sigma(X_{1:​k})
 +$
 +where $X_i$ denotes ​the coordinate projection on the $i$-th component, that is, 
 +$X_i(\omega)=\omega_i$ ​for $\omega\in\Xset^{\mathbb{N}}$. 
 <WRAP center round tip 80%> <WRAP center round tip 80%>
-**Lemma**Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies ** the approximation property**, that is+**Lemma ​(Approximation Lemma).**   
 +Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies ​the **approximation property**:
  
 For every $\delta>​0$,​ there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that For every $\delta>​0$,​ there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that
Line 11: Line 19:
 \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta. \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta.
 $$ $$
- 
 </​WRAP>​ </​WRAP>​
  
 ===== Proof ===== ===== Proof =====
  
 +The proof is a classical application of the **monotone class theorem**.
  
-The proof is a standard application of the **monotone class theorem**. +Let $\mathcal{M}$ ​denote ​the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ ​that satisfy ​the approximation property ​stated ​in the lemma  
- +We show that $\mathcal{M}$ is a monotone class.
-Define ​$\mathcal{M}$ ​as the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ ​for which the above **approximation property** (defined ​in the Lemma) holds. +
- +
-We verify ​that $\mathcal{M}$ is a monotone class.+
  
   * **Stability under set differences.**  ​   * **Stability under set differences.**  ​
-Let $A_0,​A_1\in\mathcal{M}$ with $A_0\subset A_1$. Then we will show $A_1\setminus A_0\in\mathcal{M}$.+Let $A_0,​A_1\in\mathcal{M}$ with $A_0\subset A_1$. We claim that $A_1\setminus A_0\in\mathcal{M}$.
  
-Indeed, for any sets $A_0,​A_1,​B_0,​B_1$,​ the following identity holds:+For arbitrary ​sets $A_0,​A_1,​B_0,​B_1$,​ the following identity holds:
 $$ $$
 \mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0} \mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}
Line 34: Line 39:
 $$ $$
  
-Taking ​expectations and absolute values yields+Taking absolute values ​and expectations ​yields
 $$ $$
 \mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big] \mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big]
Line 42: Line 47:
 \mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big]. \mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big].
 $$ $$
-When $A_0,​A_1\in\mathcal{M}$,​ both terms on the right-hand side can be made arbitrarily small. ​So, the approximation property ​also holds for $A_1\setminus A_0$.+ 
 +Since $A_0,​A_1\in\mathcal{M}$,​ both terms on the right-hand side can be made arbitrarily small. ​Hence, the approximation property holds for $A_1\setminus A_0$.
  
   * **Stability under increasing limits.**  ​   * **Stability under increasing limits.**  ​
Line 50: Line 56:
 $$ $$
  
-Then using the triangular inequality for any set $B$, $\PE[|\mathbb{1}_A-\mathbb{1}_B|] \leq \PE[|\mathbb{1}_A-\mathbb{1}_{A_n}|] + \PE[|\mathbb{1}_{A_n}-\mathbb{1}_B|]$,​ we can easily deduce that $A$ also belongs to $\mathcal{M}$ provided that $A_n\in \mathcal{M}$ for any $n\in \nset$. +For any set $B$, the triangle inequality gives
- +
-Since $\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$,​ it contains+
 $$ $$
-\sigma\Big(\bigcup_{k\geq0}\mathcal{F}_k\Big)=\mathcal{X}^{\otimes\mathbb{N}}.+\mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big] 
 +\leq 
 +\mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_{A_n}|\big] 
 +
 +\mathbb{E}\big[|\mathbb{1}_{A_n}-\mathbb{1}_B|\big].
 $$ $$
-This completes the proof. 
- 
- 
-{{page>:​defs}} 
- 
-====== Approximation Lemma ====== 
- 
-Let $(\Xset^{\mathbb{N}},​\Xsigma^{\otimes\mathbb{N}},​\mathbb{P})$ be a probability space.  ​ 
-For each $k\in\mathbb{N}$,​ define 
-$$ 
-\mathcal{F}_k=\sigma(X_{1:​k}),​ 
-$$ 
-where $X_i$ denotes the coordinate projection on the $i$-th component, that is, 
-$X_i(\omega)=\omega_i$ for $\omega\in\Xset^{\mathbb{N}}$. 
- 
-<WRAP center round tip 80%> 
-**Lemma (Approximation Lemma).**  ​ 
-Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies the **approximation property**: 
- 
-For every $\delta>​0$,​ there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that 
-$$ 
-\mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta. 
-$$ 
-</​WRAP>​ 
- 
-===== Proof ===== 
- 
-The proof is a classical application of the **monotone class theorem**. 
- 
-Let $\mathcal{M}$ denote the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ that satisfy the approximation property stated in the lemma.  ​ 
-We show that $\mathcal{M}$ is a monotone class. 
- 
-  * **Stability under set differences.**  ​ 
-    Let $A_0,​A_1\in\mathcal{M}$ with $A_0\subset A_1$. We claim that $A_1\setminus A_0\in\mathcal{M}$. 
- 
-    For arbitrary sets $A_0,​A_1,​B_0,​B_1$,​ the following identity holds: 
-    $$ 
-    \mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0} 
-    =\mathbb{1}_{A_1}\mathbb{1}_{A_0^c}-\mathbb{1}_{B_1}\mathbb{1}_{B_0^c} 
-    =\mathbb{1}_{A_1}(\mathbb{1}_{A_0^c}-\mathbb{1}_{B_0^c}) 
-    +(\mathbb{1}_{A_1}-\mathbb{1}_{B_1})\mathbb{1}_{B_0^c}. 
-    $$ 
- 
-    Taking absolute values and expectations yields 
-    $$ 
-    \mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big] 
-    \leq 
-    \mathbb{E}\big[|\mathbb{1}_{A_0}-\mathbb{1}_{B_0}|\big] 
-    + 
-    \mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big]. 
-    $$ 
- 
-    Since $A_0,​A_1\in\mathcal{M}$,​ both terms on the right-hand side can be made arbitrarily small. Hence, the approximation property holds for $A_1\setminus A_0$. 
- 
-  * **Stability under increasing limits.**  ​ 
-    Let $(A_n)_{n\geq0}$ be an increasing sequence of sets in $\mathcal{M}$,​ and define 
-    $$ 
-    A=\bigcup_{n\geq0}A_n. 
-    $$ 
- 
-    For any set $B$, the triangle inequality gives 
-    $$ 
-    \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big] 
-    \leq 
-    \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_{A_n}|\big] 
-    + 
-    \mathbb{E}\big[|\mathbb{1}_{A_n}-\mathbb{1}_B|\big]. 
-    $$ 
  
-    ​Since $\mathbb{1}_{A_n}\uparrow\mathbb{1}_A$ pointwise, the first term converges to zero, while the second term can be made arbitrarily small because $A_n\in\mathcal{M}$. Therefore, $A\in\mathcal{M}$.+Since $\mathbb{1}_{A_n}\uparrow\mathbb{1}_A$ pointwise, the first term converges to zero, while the second term can be made arbitrarily small because $A_n\in\mathcal{M}$. Therefore, $A\in\mathcal{M}$.
  
 Finally, $\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$. By the monotone class theorem, it contains Finally, $\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$. By the monotone class theorem, it contains
world/approximation-lemma.1770274789.txt.gz · Last modified: 2026/02/05 07:59 by rdouc