Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:approximation-lemma

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:approximation-lemma [2026/02/05 07:46]
rdouc [Proof]
world:approximation-lemma [2026/02/05 08:02] (current)
rdouc ↷ Page moved from mynotes:approximation-lemma to world:approximation-lemma
Line 3: Line 3:
 ====== Approximation Lemma ====== ====== Approximation Lemma ======
  
-Let $(\Xset^\nset,​\Xsigma^{\otimes \nset}, \PP)$ be a probability space. ​We write $\mathcal{F}_k=\sigma(X_{1:​k})$ where $X_i$ is the coordinate projection on the $i$-th component$X_i(\omega)=\omega_i$ ​where $\omega \in \rset^\nset$. +Let $(\Xset^{\mathbb{N}},​\Xsigma^{\otimes\mathbb{N}},\mathbb{P})$ be a probability space. ​  
 +For each $k\in\mathbb{N}$,​ define 
 +$$ 
 +\mathcal{F}_k=\sigma(X_{1:​k})
 +$
 +where $X_i$ denotes ​the coordinate projection on the $i$-th component, that is, 
 +$X_i(\omega)=\omega_i$ ​for $\omega\in\Xset^{\mathbb{N}}$. 
 <WRAP center round tip 80%> <WRAP center round tip 80%>
-**The Approximation Lemma**.    +**Lemma (Approximation Lemma).**   
-Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies the **approximation property** ​defined as:+Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies the **approximation property**:
  
 For every $\delta>​0$,​ there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that For every $\delta>​0$,​ there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that
Line 12: Line 19:
 \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta. \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta.
 $$ $$
- 
 </​WRAP>​ </​WRAP>​
  
 ===== Proof ===== ===== Proof =====
  
 +The proof is a classical application of the **monotone class theorem**.
  
-The proof is a standard application of the **monotone class theorem**. +Let $\mathcal{M}$ ​denote ​the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ ​that satisfy ​the approximation property ​stated ​in the lemma  
- +We show that $\mathcal{M}$ is a monotone class.
-Define ​$\mathcal{M}$ ​as the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ ​for which the above approximation property ​(defined ​in the Lemma) holds. +
- +
-We verify ​that $\mathcal{M}$ is a monotone class.+
  
   * **Stability under set differences.**  ​   * **Stability under set differences.**  ​
-Let $A_0,​A_1\in\mathcal{M}$ with $A_0\subset A_1$. Then $A_1\setminus A_0\in\mathcal{M}$.+Let $A_0,​A_1\in\mathcal{M}$ with $A_0\subset A_1$. We claim that $A_1\setminus A_0\in\mathcal{M}$.
  
-Indeed, for any sets $A_0,​A_1,​B_0,​B_1$,​ the following identity holds:+For arbitrary ​sets $A_0,​A_1,​B_0,​B_1$,​ the following identity holds:
 $$ $$
 \mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0} \mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}
Line 35: Line 39:
 $$ $$
  
-Taking ​expectations and absolute values yields+Taking absolute values ​and expectations ​yields
 $$ $$
 \mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big] \mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big]
Line 43: Line 47:
 \mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big]. \mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big].
 $$ $$
-Since both terms on the right-hand side can be made arbitrarily small, the approximation property holds for $A_1\setminus A_0$.+ 
 +Since $A_0,​A_1\in\mathcal{M}$, ​both terms on the right-hand side can be made arbitrarily small. Hence, the approximation property holds for $A_1\setminus A_0$.
  
   * **Stability under increasing limits.**  ​   * **Stability under increasing limits.**  ​
Line 51: Line 56:
 $$ $$
  
-Then+For any set $B$, the triangle inequality gives
 $$ $$
-\mathbb{1}_{A_n}\uparrow\mathbb{1}_A \quad \text{pointwise}.+\mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big] 
 +\leq 
 +\mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_{A_n}|\big] 
 +
 +\mathbb{E}\big[|\mathbb{1}_{A_n}-\mathbb{1}_B|\big].
 $$ $$
-By monotone convergence,​ this implies that $A$ also belongs to $\mathcal{M}$. 
  
-Since $\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$,​ it contains+Since $\mathbb{1}_{A_n}\uparrow\mathbb{1}_A$ pointwise, the first term converges to zero, while the second term can be made arbitrarily small because $A_n\in\mathcal{M}$. Therefore, $A\in\mathcal{M}$. 
 + 
 +Finally, ​$\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$. By the monotone class theorem, it contains
 $$ $$
 \sigma\Big(\bigcup_{k\geq0}\mathcal{F}_k\Big)=\mathcal{X}^{\otimes\mathbb{N}}. \sigma\Big(\bigcup_{k\geq0}\mathcal{F}_k\Big)=\mathcal{X}^{\otimes\mathbb{N}}.
 $$ $$
 This completes the proof. This completes the proof.
 +
  
world/approximation-lemma.1770273980.txt.gz · Last modified: 2026/02/05 07:46 by rdouc