Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:useful-bounds

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
world:useful-bounds [2022/11/17 17:30]
rdouc [Doob's inequalities]
world:useful-bounds [2022/11/17 17:44]
rdouc [Doob's inequalities]
Line 112: Line 112:
 === Proof === === Proof ===
 Define $\tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon}$ with the convention that $\inf \emptyset =\infty$. Then,  Define $\tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon}$ with the convention that $\inf \emptyset =\infty$. Then, 
-\begin{align*}+\begin{align} \label{eq:​fond}
 \epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}= \epsilon \PP\lr{\tau_\epsilon \leq n}&\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}] \epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}= \epsilon \PP\lr{\tau_\epsilon \leq n}&\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}]
-\end{align*}+\end{align}
  
-We prove **(ii)**. Define ​$\tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon}$ ​with the convention ​that $\inf \emptyset =\infty$. Then+  * We prove **(i)**. From \eqref{eq:​fond},​ we have  
 +$
 +\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon} \leq \PE[X_{\tau_\epsilon\indiacc{\tau_\epsilon \leq n}] \leq \PE[X_{\tau_\epsilon \wedge n}]\leq \PE[X_{\tau_\epsilon ​\wedge 0}]=\PE[X_0] 
 +$
 +where we used in the second inequality ​that $(X_n)$ is non-negative and in the third inequality that $(X_{\tau_\epsilon ​\wedge n})is a supermartingale  
 +  * We now turn to the proof of **(ii)**. Using \eqref{eq:​fond},
 \begin{align*} \begin{align*}
-\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}= \epsilon \PP\lr{\tau_\epsilon \leq n}&\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}]=\sum_{k=0}^n \PE[X_k \indiacc{\tau_\epsilon=k}]\\+\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}&​\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}]=\sum_{k=0}^n \PE[X_k \indiacc{\tau_\epsilon=k}]\\
 &\leq \sum_{k=0}^n \PE[\PE[X_n|\mcf_k] \indiacc{\tau_\epsilon=k}]=\sum_{k=0}^n \PE[X_n \indiacc{\tau_\epsilon=k}]=\PE[X_n \indiacc{\tau_\epsilon\leq n}] \leq  \PE[X_n] &\leq \sum_{k=0}^n \PE[\PE[X_n|\mcf_k] \indiacc{\tau_\epsilon=k}]=\sum_{k=0}^n \PE[X_n \indiacc{\tau_\epsilon=k}]=\PE[X_n \indiacc{\tau_\epsilon\leq n}] \leq  \PE[X_n]
 \end{align*} \end{align*}
-which completes ​the proof. ​+where we used in the last inequality that $(X_n)$ is non-negative. The proof is completed
 $\eproof$ $\eproof$
world/useful-bounds.txt · Last modified: 2022/11/18 11:14 by rdouc