Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:random-walk

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
world:random-walk [2020/04/19 17:15]
rdouc [Proof]
world:random-walk [2022/03/16 07:40]
127.0.0.1 external edit
Line 4: Line 4:
  
 <WRAP center round box 80%> <WRAP center round box 80%>
-Let $(U_i)$ be iid  Rademacher random variables, i.e. $U_i=1$ or $-1$ with probability $1/2$ and set $S_i=\sum_{j=1}^iU_j$ the associated partial sum. Define $\Delta=\inf\set{t>​0}{S_t=0}$. What is the law of $\Delta$?+Let $(U_i)$ be iid  Rademacher random variables, i.e. $U_i=1$ or $-1$ with probability $1/2$ and set $S_i=\sum_{j=1}^iU_j$ the associated partial sum. Define $\Delta=\inf\set{t>​0}{S_t=0}$. Show that $S_n$ returns to 0 with probability one. What is the law of $\Delta$? ​
 </​WRAP>​ </​WRAP>​
  
 ====== Proof ====== ====== Proof ======
-Obviously, $\PP(\Delta=2k+1)=0$.+Obviously, $\PP(\Delta=2k+1)=0$. ​It will be useful in some parts of the proof to note that, by symmetry, $\PP(\Delta=2k,​ S_1>​0)=\PP(\Delta=2k,​ S_1<0)$, so that $\PP(\Delta=2k)=2\PP(\Delta=2k,​ S_1>0)$
 Define ​ Define ​
 \begin{align*} \begin{align*}
Line 34: Line 34:
 \frac{A(z)-z/​4}{z/​4}=A(z)\lr{1+\frac{A(z)-z/​4}{z/​4}} \frac{A(z)-z/​4}{z/​4}=A(z)\lr{1+\frac{A(z)-z/​4}{z/​4}}
 $$ $$
-This is equivalent to $0=A^2(z)-A(z)+\frac{z}{4}$ so that $A(z)=\frac{1\pm \sqrt{1-z}}{2}$. Only one of the roots has an expansion with only non-negative coefficients,​ that is, $A(z)=\frac{1-\sqrt{1-z}}{2}$. ​Expanding the expression ​yields: $A(z)=\sum_{k=1}^{\infty} \begin{pmatrix}2k-2\\k-1\end{pmatrix}+This is equivalent to $0=A^2(z)-A(z)+\frac{z}{4}$ so that $A(z)=\frac{1\pm \sqrt{1-z}}{2}$. Only one of the roots has an expansion with only non-negative coefficients,​ that is, $A(z)=\frac{1-\sqrt{1-z}}{2}$. ​This implies that  
 +$$ 
 +\PP(\Delta<​\infty)=\sum_{k=1}^\infty \underbrace{\PP(\Delta=2k)}_{2\PP(\Delta=2k,​S_1>​0)}= 2 A(1)=1 
 +$$ 
 +that is, with probability 1, this random walk returns to 0.  
 + 
 +Moroever, expanding $\frac{1-\sqrt{1-z}}{2}$ ​yields: $A(z)=\sum_{k=1}^{\infty} \begin{pmatrix}2k-2\\k-1\end{pmatrix}
 \frac{1}{k 4^k} z^k$. Therefore, by symmetry, $\PP(\Delta=2k)=2\PP(\Delta=2k,​S_1>​0)=2\begin{pmatrix}2k-2\\k-1\end{pmatrix}\frac{1}{k 4^k}$. ​ \frac{1}{k 4^k} z^k$. Therefore, by symmetry, $\PP(\Delta=2k)=2\PP(\Delta=2k,​S_1>​0)=2\begin{pmatrix}2k-2\\k-1\end{pmatrix}\frac{1}{k 4^k}$. ​
  
-In particular, this implies that $\PP(\Delta<​\infty)=\sum_{k=1}^\infty \PP(\Delta=2k)= 2 A(1)=1$: with probability 1, this random walk returns to 0.  
  
-====== ​Comments ​====== +====== ​Other method ​======
- +
- +
-Maybe there exists a more simple way to find the expression of $\alpha_k$... A particular trajectory has a probability $(1/​2)^{2k}=1/​4^k$ to occur. It remains to count the number of trajectories. Since $U_1=1$ and $U_{2k}=-1$,​ it remains to count the number of trajectories of size $2k-2$ such that $S_i\geq 0$ for all intermediate time $i$ and $S_{2k-2}=0$. Without the constraint on the positivity of $S_i$ at each intermediate times, it would have been as if we take $k-1$ among $2k-2$ terms but in that case we count all the trajectories (even those that cross the $X$-axis), that is $\begin{pmatrix}2k-2\\ k-1\end{pmatrix}$. Comparing with the expression we finally obtained, we have find a justification for dividing this number by $k$. An idea would be to split them into well chosen equivalent classes of size $k$ with only one representant in each class with positive trajectories but I can't find this equivalence relation...+
  
 +Note that, setting $U_i$ such that $X_i=2U_i-1$,​ we have that $(U_i)$ are iid Bernoulli random variables with success probability $1/2$. Then,   ​$\PP(S_{2n}=0)=\PP(\sum_{i=1}^{2n} U_i=n)=\frac{(2n)!}{(n!)^2} \lr{\frac14}^{2n} \sim \frac{1}{\sqrt{n\pi}}$ where we have used the Stirling equivalence. This implies that
 +\begin{equation}
 +\label{eq:​one}
 +\infty=\sum_{n=1}^\infty \PP(S_{2n}=0)=\PE[\sum_{n=1}^\infty \indi{0}(S_{2n})]=\PE[\sum_{k=1}^\infty \indi{T^k<​\infty}]=\sum_{k=1}^\infty \PP(T^k<​\infty)
 +\end{equation}
 +where $T^k$ is the time index of the $k$-th visit of $(S_n)$ to $0$. By convention, we set $T^1=T$. We now show by induction that for all $k\geq 1$,
 +\begin{equation} \label{eq:​induc}
 +\PP(T^k<​\infty)=\PP(T<​\infty)^k\eqsp. ​
 +\end{equation}
 +The case $k=1$ obviously holds. Now, assume that \eqref{eq:​induc} holds for some $k\geq 1$. Then, 
 +\begin{align*}
 +\PP(T^{k+1}<​\infty)&​=\PP(T^{k}<​\infty,​T^{k+1}<​\infty)=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m,​T^{k+1}=m+n)\\
 +&​=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m,​\forall t\in[1:​n-1],​\ \sum_{\ell=1}^{t}X_{m+\ell}\neq 0,​\sum_{\ell=1}^{n}X_{m+\ell}=0)\\
 +&​=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m)\underbrace{\PP(\forall t\in[1:​n-1],​\ \sum_{\ell=1}^{t}X_{m+\ell}\neq 0,​\sum_{\ell=1}^{n}X_{m+\ell}=0)}_{\PP(T=n)}\\
 +&​=\PP(T^k<​\infty) \PP(T<​\infty)
 +\end{align*}
 +and by the induction assumption, we get $\PP(T^{k+1}<​\infty)=\PP(T<​\infty)^{k+1}$. ​
 +Plugging \eqref{eq:​induc} into \eqref{eq:​one} yields
 +$$
 +\infty=\sum_{k=1}^\infty \PP(T<​\infty)^k
 +$$
 +Since $\PP(T<​\infty) \in[0,1]$, this implies that $\PP(T<​\infty)=1$. ​
world/random-walk.txt · Last modified: 2023/04/18 14:58 by rdouc