Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:martingale

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
world:martingale [2021/03/20 09:04]
rdouc [Proof]
world:martingale [2021/03/30 14:08]
rdouc
Line 2: Line 2:
  
 ===== Supermartingale convergence results ===== ===== Supermartingale convergence results =====
 + --- //​[[[email protected]|randal]] 2021/03/30 14:04//
  
 <WRAP center round tip 80%> <WRAP center round tip 80%>
Line 19: Line 20:
 Let $a<b$ and define ​ $C_1=\indiacc{X_0<​a}$ and for $n\geq 2$,  Let $a<b$ and define ​ $C_1=\indiacc{X_0<​a}$ and for $n\geq 2$, 
 $$ $$
-C_n=\indiacc{C_{n-1}=1,​X_{n-1} \leq b}+\indiacc{C_{n-1}=0,​X_{n-1} ​\leq a}+C_n=\indiacc{C_{n-1}=1,​X_{n-1} \leq b}+\indiacc{C_{n-1}=0,​X_{n-1} ​a}
 $$ $$
 In words, the first time $C_n $ flags $1$ is when $X_{n-1}<​a$. Then it flags $1$ until $X_{n-1}$ goes above $b$. Then it flags $0$ until $X_n$ goes below $a$. So consecutive sequences of $C_n=1$ are linked with upcrossings of $[a,b] $ for $(X_n) $. Now, define ​ In words, the first time $C_n $ flags $1$ is when $X_{n-1}<​a$. Then it flags $1$ until $X_{n-1}$ goes above $b$. Then it flags $0$ until $X_n$ goes below $a$. So consecutive sequences of $C_n=1$ are linked with upcrossings of $[a,b] $ for $(X_n) $. Now, define ​
Line 45: Line 46:
 which shows that $X_\infty=\lim_{n \to \infty} X_n$ exits almost surely. ​ which shows that $X_\infty=\lim_{n \to \infty} X_n$ exits almost surely. ​
  
-Morevoer, $\PE[X_0] \geq \PE[X_n]=\PE[X^+_n]-\PE[X^-_n]$ so that+Moreover, $\PE[X_0] \geq \PE[X_n]=\PE[X^+_n]-\PE[X^-_n]$ so that
 $$ $$
-\sup_n \PE[|X_n|]=\sup_n \lr{\PE[X^+_n]+\PE[X^-_n]} ​ \geq \PE[X_0] +2 \sup_n \PE[X^-_n] \leq \PE[X_0] +2 M<​\infty  ​+\sup_n \PE[|X_n|]=\sup_n \lr{\PE[X^+_n]+\PE[X^-_n]} ​ \leq \PE[X_0] +2 \sup_n \PE[X^-_n] \leq \PE[X_0] +2 M<​\infty  ​
 $$ $$
-which implies by Fatou'​s lemma that $\PE[|X_\infty|]=\PE[\liminf_{n}|X_\infty|] \leq \liminf_{n} \PE[|X_\infty|] \leq \sup_n ​  ​\PE[|X_n|]<​\infty$. The proof is completed.+which implies by Fatou'​s lemma that $\PE[|X_\infty|]=\PE[\liminf_{n}|X_n|] \leq \liminf_{n} \PE[|X_n|] \leq \sup_n ​  ​\PE[|X_n|]<​\infty$. The proof is completed.
 ===== Corollary: Submartingale convergence results ===== ===== Corollary: Submartingale convergence results =====
    
world/martingale.txt ยท Last modified: 2022/03/16 07:40 (external edit)