Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:martingale

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
world:martingale [2021/03/20 08:50]
rdouc [Statement: Martingale convergence results]
world:martingale [2021/03/30 14:08]
rdouc
Line 1: Line 1:
 {{page>:​defs}} {{page>:​defs}}
  
-====== Statement: Martingale ​convergence results ======+===== Supermartingale ​convergence results ===== 
 + --- //​[[[email protected]|randal]] 2021/03/30 14:04//
  
 <WRAP center round tip 80%> <WRAP center round tip 80%>
Line 15: Line 16:
  
  
-===== Proof =====+==== Proof ====
  
 Let $a<b$ and define ​ $C_1=\indiacc{X_0<​a}$ and for $n\geq 2$,  Let $a<b$ and define ​ $C_1=\indiacc{X_0<​a}$ and for $n\geq 2$, 
 $$ $$
-C_n=\indiacc{C_{n-1}=1,​X_{n-1} \leq b}+\indiacc{C_{n-1}=0,​X_{n-1} ​\leq a}+C_n=\indiacc{C_{n-1}=1,​X_{n-1} \leq b}+\indiacc{C_{n-1}=0,​X_{n-1} ​a}
 $$ $$
 In words, the first time $C_n $ flags $1$ is when $X_{n-1}<​a$. Then it flags $1$ until $X_{n-1}$ goes above $b$. Then it flags $0$ until $X_n$ goes below $a$. So consecutive sequences of $C_n=1$ are linked with upcrossings of $[a,b] $ for $(X_n) $. Now, define ​ In words, the first time $C_n $ flags $1$ is when $X_{n-1}<​a$. Then it flags $1$ until $X_{n-1}$ goes above $b$. Then it flags $0$ until $X_n$ goes below $a$. So consecutive sequences of $C_n=1$ are linked with upcrossings of $[a,b] $ for $(X_n) $. Now, define ​
Line 43: Line 44:
   & \leq \sum_{a,​b\in \mathbb{Q}, a<​b} ​ \PP(U_\infty[a,​b]=\infty)=0   & \leq \sum_{a,​b\in \mathbb{Q}, a<​b} ​ \PP(U_\infty[a,​b]=\infty)=0
 \end{align*} \end{align*}
-which shows that $X_\infty=\lim_{n \to \infty} X_n$ exits almost surely. ​Morevoer, $\PE[X_0] \geq \PE[X_n]=\PE[X^+_n]-\PE[X^-_n]$ so that+which shows that $X_\infty=\lim_{n \to \infty} X_n$ exits almost surely. ​ 
 + 
 +Moreover, $\PE[X_0] \geq \PE[X_n]=\PE[X^+_n]-\PE[X^-_n]$ so that
 $$ $$
-\sup_n \PE[|X_n|]=\sup_n \lr{\PE[X^+_n]+\PE[X^-_n]} ​ \geq \PE[X_0] +2 \sup_n \PE[X^-_n] \leq \PE[X_0] +2 M<​\infty  ​+\sup_n \PE[|X_n|]=\sup_n \lr{\PE[X^+_n]+\PE[X^-_n]} ​ \leq \PE[X_0] +2 \sup_n \PE[X^-_n] \leq \PE[X_0] +2 M<​\infty  ​
 $$ $$
-which implies by Fatou'​s lemma that $\PE[|X_\infty|]=\PE[\liminf_{n}|X_\infty|] \leq \liminf_{n} \PE[|X_\infty|] \leq \sup_n ​  ​\PE[|X_n|]<​\infty$ +which implies by Fatou'​s lemma that $\PE[|X_\infty|]=\PE[\liminf_{n}|X_n|] \leq \liminf_{n} \PE[|X_n|] \leq \sup_n ​  ​\PE[|X_n|]<​\infty$. The proof is completed. 
-===== Corollary =====+===== Corollary: Submartingale convergence results ​=====
    
 {{anchor:​submartingale:​}} {{anchor:​submartingale:​}}
Line 58: Line 61:
   * for all $n\geq 1$, we have $\PE[X_{n}|\mcf_{n-1}]\geq X_{n-1}$.   * for all $n\geq 1$, we have $\PE[X_{n}|\mcf_{n-1}]\geq X_{n-1}$.
 that is, $\seq{X_n}{n\in\nset}$ is a $\mcf$-submartingale,​ with positive part bounded in $\lone$. ​ that is, $\seq{X_n}{n\in\nset}$ is a $\mcf$-submartingale,​ with positive part bounded in $\lone$. ​
-Then, almost surely, $X_\infty=\lim_{n\to\infty} X_n$ exists and is finite.+Then, almost surely, $X_\infty=\lim_{n\to\infty} X_n$ exists and is in $\lone$.
  
 </​WRAP>​ </​WRAP>​
        
  
world/martingale.txt · Last modified: 2022/03/16 07:40 (external edit)