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SIS Geometric ergodicity means that there exists constants C > 0
eory an

I and o € (0,1) such that for all n € N,

|pP™ = mlpy < Co"

Introduction

where |||y is the total variation norm (to be defined later)
between two measures.
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where |||y is the total variation norm (to be defined later)
between two measures.

uP™ is the law of X, starting from Xy ~ p
7 is the law of X, starting from Xy ~ 7

Geometric ergodicity for Markov chains should not be
confused with the notion of ergodic dynamical systems
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Introduction

Geometric ergodicity means that there exists constants C > 0
and ¢ € (0, 1) such that for all n € N,

| P™ — 7T||TV < Co"

where |||y is the total variation norm (to be defined later)
between two measures.

uP™ is the law of X, starting from Xy ~ p
7 is the law of X, starting from Xy ~ 7

Geometric ergodicity for Markov chains should not be
confused with the notion of ergodic dynamical systems

CLT means that

Lp

n—1
n~H2Y {(Xy) = w(h)} = N(0, 0% (h))
k=0

where h belongs to some class of functions and o, should be
explicit.
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Coupling and

total variation

Definition

Let (X, X') be a measurable space and let v, ;1 be two
probability measures p, v € M1(X). We define C(p, v), the
coupling set associated to (u,v) as follows

Clu,v) = {7y € MI(X?) : (- x X) = p(-),y(X x -) =w()}

Any v € C(u,v) is called a coupling of (u,v).
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Definition

Let (X, X') be a measurable space and let v, ;1 be two
probability measures p, v € M1(X). We define C(p, v), the
coupling set associated to (u,v) as follows

Clu,v) = {7 € MI(X?) = 7(- x X) = (), y(X x ) = ()}
Any v € C(u,v) is called a coupling of (u,v).
In words, 7 is a coupling of (u,v) if the following

property holds: if (X,Y) ~ ~, then we have the
marginal conditions: X ~ yand Y ~ v.
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Definition

Let (X, X') be a measurable space and let v, ;1 be two
probability measures p, v € M1(X). We define C(p, v), the
coupling set associated to (u,v) as follows

Cusv) = {7 € Mi(X?) = 7(- x X) = p(),7(X x ) = v(")}
Any v € C(u,v) is called a coupling of (u,v).

In words, 7 is a coupling of (u,v) if the following
property holds: if (X,Y) ~ ~, then we have the
marginal conditions: X ~ yand Y ~ v.

Example: The law of (X, X') where X ~ p is a coupling
of (i, p). Other example if X ~ pand Y ~ p and
X LY, then, the law of (X,Y") is a coupling of (1, ).
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Definition

Let (X, X') be a measurable space and let v, i be two
probability measures y, v € M;(X). Then the

total variation norm between 1 and v noted || — v||py, is
defined by

i = vy = 2sup {Ju(f) — v(f)] = £ € FX),0< f <1}

(1)
- / [0 — 1 (2)C(dx) )
)

=2inf {P(X #Y) : (X,Y) ~~y where y € C(u,v)}
(3)

where p(dz) = ¢o(z)((dz) and v(dz) = ¢1(z)((dz) .

Proof should be done on the blackboard
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[ Minorizing condition | for all d > 0, there exists ¢; > 0 and
a probability measure v; such that

S Vo€ Cy={V<d}, Plz,”)> eaval) *)
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Assumption Al

[ Minorizing condition | for all d > 0, there exists ¢; > 0 and
a probability measure v; such that

S Vo€ Cy={V<d}, Plz,”)> eaval) *)

Assumption A2

[ Drift condition ] there exists a constants (), b) € (0,1) x RT
such that for all z € X,

PV (z) < A\V(z) +b
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eGrengE;iti:yc some measurable function V > 1.
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Geometric
ergodicity

Theorem

(Forgetting of the initialization) Assume (A1) and (A2) for
some measurable function V' > 1. Then, there exists a
constant o € (0,1) such that for all x,2' € X and all n € N,

HP” — P"(x HTV o" [V(w) + V(ac')] )

Proof is hard. The main ideas will be given on the blackboard
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Corollary

(Geometric ergodicity) Assume that (A1) and (A2) hold
for some measurable function V- > 1.

Geometric
ergodicity
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Corollary

(Geometric ergodicity) Assume that (A1) and (A2) hold
for some measurable function V> 1. Then, the Markov kernel
P admits a unique invariant probability measure .

Geometric
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Geometric
ergodicity

Corollary

(Geometric ergodicity) Assume that (A1) and (A2) hold
for some measurable function V- > 1. Then, the Markov kernel
P admits a unique invariant probability measure w. Moreover,
7(V) < oo and there exists constants (9,a) € (0,1) x RT such
that for all p € M;(X) and all n € N,

[pP"™ = ||y < a0 pu(V).

Proof should be done on the blackboard
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MCMC: Let (M,)nen be a sequence of random variables on the same

MR probability space (2, F,P) and let (F,)nen be a filtration (ie

Applications

R. Douc and fOF a” n e N, .Fn C fn+1 C .F)

S. Le Corff

Definition
We say that (M )nen is a (Fp)-martingale if for all n € N,
M, is integrable and for all n > 1,

E[Mn|~rn—1] - Mn—l

Recap on martingales
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Let (M,)nen be a sequence of random variables on the same
probability space (2, F,P) and let (F,)nen be a filtration (ie
foralln €N, F, C Foy1 C F).

Definition

We say that (M )nen is a (Fp)-martingale if for all n € N,
M, is integrable and for all n > 1,

E[Mn|~rn—1] - Mn—l

The increment process of the martingale is by definition
(Mn—i-l - Mn)nEN-
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Introduction

theorem

Recap on martingales

Let (M,)nen be a sequence of random variables on the same
probability space (2, F,P) and let (F,,)nen be a filtration (ie
foralln €N, F, C Foy1 C F).

Definition

We say that (M )nen is a (Fp)-martingale if for all n € N,
M, is integrable and for all n > 1,

E[Mn|~FrL—1] - Mn—l

The increment process of the martingale is by definition
(Mn—i-l - Mn)nEN-

Theorem

If a sequence (Mpy)nen is a (Fy)-martingale with stationary

and square integrable increments , then

n~V2M, £ N (0, E[(M; — My)?))
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The Poisson equation

Definition

For a given measurable function h such that 7|h| < oo, the
Poisson equation is defined by

h — Ph = h — n(h) (5)

A solution to the Poisson equation is a function h for which (5)
holds provided that P|h|(z) < oo for all z € X.
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Define

n—1
Sa(h) = {h(Xg) — m(h)}
k=0

The Poisson equation
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n—1
Sa(h) = {h(Xg) — m(h)}
k=0

= My (h) + h(Xo) — h(Xy)

The Poisson equation
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A Link between Poisson equations and Martingales

Define

n—1

Su(h) =Y {h(Xk) —m(h)}
k=0
= My (h) + h(Xo) — h(Xy)
where .
My () = " {R(X) = Ph(Xp1) } (6)
k=1
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Link between Poisson equations and Martingales

Define
n—1
Su(h) =Y {h(Xy) — ()}
k=0
= My (h) + h(Xo) — h(Xy)
where

My (R) = 3 {h(Xe) - Ph(Xp1) } (6)
k=1

Note that {Mn(ﬁ)}neN is indeed a (Fj)-martingale where

T =0(Xo, ..., Xp).
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Link between Poisson equations and Martingales

Define

n—1

Su(h) = > {h(Xy) = m(h)}
k=0
= My (h) + h(Xo) — h(Xy)
where .
My () = " {R(X) = Ph(Xp1) } (6)
k=1

Note that {Mn(ﬁ)} N is indeed a (Fj)-martingale where
ne
Fi = o(Xo,...,Xk). Indeed we have
E[Mn(il”fn—l] = Mp_1(h) = E[B(Xn) - Pﬁ(Xn—l)LFn—l]
Ph(Xp_1) — Ph(X,_1) =0

R. Douc and S. Le Corff, Telecom Sudparis MCMC: Theory and Applications 15 / 18



MCMC:
Theory and
Applications

R. Douc and
S. Le Corff

Theorem

Assume that (A1) and (A2) hold for some measurable function
V' > 1. Then, for any function h such that |h| <V, the
function

h=3" (P n(h)) 7
n=0

is well-defined. Moreover, h is a solution of the Poisson
equation associated to h and there exists a constant ~y such
that for all x € X,
[h(z)| <V ()

Proof should be done on the blackboard
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(CLT with Poisson assumption) Let P be a Markov kernel
with a unique invariant probability measure w. Let h € L2(r).
Assume that there exists a solution h € L2(r) to the Poisson
equation h — Ph=h.

The Poisson equation
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Theorem

(CLT with Poisson assumption) Let P be a Markov kernel
with a unique invariant probability measure w. Let h € L2(r).
Assume that there exists a solution h € L2(r) to the Poisson
equation h — Ph = h. Then

n—1
”_1/2Z{h(Xk) —a(h)} = N(0,0%(h)) ,
k=0
where X X
o2(h) = Ex[{h(X1) — Ph(Xo)}?] (8)

Proof should be done on the blackboard
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(A2) hold for some function V.

Central limit
theorems.
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(CLT with A1-A2 assumptions) Assume that (Al and

(A2) hold for some function V. Then, for all measurable
functions h such that |h|?> <V,

Lp

n—1
n-1/2 Z{h(Xk) —7(h)} = N(0,02(h)),
k=0

where A )
o7 (h) = Ex[{h(X1) — Ph(Xo)}’] (9)
and h is defined as in (7).

Proof should be done on the blackboard
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