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Randal Douc and Sylvain Le Corff (Télécom SudParis) M2DS, MCMC theory and applications 3 / 10



Activities

Let P be a Markov kernel on X×X .

Definition (Invariant probability measure)

We say that π ∈ M1(X) is an invariant probability measure for P
if πP = π.

If πP = π, then πPn = πPn−1 = . . . = π.
Therefore, if X0 ∼ π then X1 ∼ πP = π and more generally,
Xn ∼ π.
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Definition (Reversibility)

Let π ∈ M1(X) and P be a Markov kernel on X×X . We say that
P is π-reversible if and only if (with infinitesimal notation)

π(dx)P (x,dy) = π(dy)P (y,dx), (1)

In other words, P is π-reversible iff for all measurable bounded or
non-negative functions h on

(
X2,X⊗2

)
,∫∫

X2

h(x, y)π(dx)P (x,dy) =

∫∫
X2

h(x, y)π(dy)P (y,dx). (2)

Proposition

If the Markov kernel P is π-reversible, then it is π-invariant.
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Metropolis Hastings Algorithm

Input:n
Output: X0, . . . , Xn

• At t = 0, draw X0 according to some arbitrary distribution
• For t← 0 to n− 1

1 Draw independently Yt+1 ∼ Q(Xt, ·) and Ut+1 ∼ Unif(0, 1)

2 Set Xt+1 =

{
Yt+1 if Ut+1 6 α(Xt, Yt+1)

Xt otherwise

Terminology:
• Q is the instrumental kernel or proposition kernel .

• The acceptance probability is usually chosen equal to

α(x, y) = αMH(x, y) = min
(
π(y)q(y,x)
π(x)q(x,y) , 1

)
but other choices

are possible.

Proposition

The Markov kernel associated to a MH algorithm is π-reversible.
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The independence sampler

1 If the proposition update is Yt+1 ∼ q (·) , then the proposed
candidate is drawn irrespective of the current value of the
Markov chain.

2 The proposition kernel is then Q(x, dy) = q(y)λ(dy) where q
is a density wrt λ on X, and in such case, the acceptance

probability is α(x, y) = min
(
π(y)q(x)
π(x)q(y) , 1

)
3 Such Metropolis-Hastings algorithm is called the

Independence Sampler.
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Random Walk MH algorithm

1 In this algorithm, the proposition update is Yt+1 = Xk + ηk
where ηk ∼ q(·) where q(u) = q(−u) for all u ∈ X and
X = Rp.

2 In such case, the proposition kernel is
Q(x, dy) = q(y − x)λ(dy) and the acceptance probability is

α(x, y) = min
(
π(y)
π(x) , 1

)
.

3 The associated algorithm is called the (symmetric)
Random Walk Metropolis-Hasting.
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