S. Schechtman

Introduction

Coupling and total variation

Geometric ergodicity

Central Lin theorem

Recap on martingale
The Poisson equatio
Central limit

Markov Chain Monte Carlo Theory and Practical applications

Chapter 4: Geometric ergodicity and CLT

R. Douc and S. Schechtman

Télécom SudParis, Institut Polytechnique de Paris randal.douc@telecom-sudparis.eu

Theory and **Applications**

- 1 Introduction
- 2 Coupling and total variation
- 3 Geometric ergodicity
- 4 Central Limit theorem

Theory and **Applications**

Introduction

1 Introduction

- 2 Coupling and total variation
- 4 Central Limit theorem

R. Douc and S. Schechtman

Introduction

total variation

Central Limi

theorem

Recap on martingales
The Poisson equation
Central limit

Geometric ergodicity means that there exists constants C>0 and $\varrho\in(0,1)$ such that for all $n\in\mathbb{N}$,

$$\|\mu P^n - \pi\|_{\mathrm{TV}} \leqslant C\varrho^n$$

where $\|\cdot\|_{\mathrm{TV}}$ is the total variation norm (to be defined later) between two measures.

- **1** μP^n is the law of X_n starting from $X_0 \sim \mu$
- 2 π is the law of X_n starting from $X_0 \sim \pi$
- Geometric ergodicity for Markov chains should not be confused with the notion of ergodic dynamical systems

CLT means that

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h))$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

Central Limi

theorem

Recap on martingales
The Poisson equation
Central limit
theorems

Geometric ergodicity means that there exists constants C>0 and $\varrho\in(0,1)$ such that for all $n\in\mathbb{N}$,

$$\|\mu P^n - \pi\|_{\mathrm{TV}} \leqslant C\varrho^n$$

where $\|\cdot\|_{\mathrm{TV}}$ is the total variation norm (to be defined later) between two measures.

- **1** μP^n is the law of X_n starting from $X_0 \sim \mu$
- **2** π is the law of X_n starting from $X_0 \sim \pi$
- Geometric ergodicity for Markov chains should not be confused with the notion of ergodic dynamical systems

CLT means that

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}^{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h))$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

Central Limit theorem

Recap on martingales
The Poisson equation
Central limit

Geometric ergodicity means that there exists constants C>0 and $\varrho\in(0,1)$ such that for all $n\in\mathbb{N}$,

$$\|\mu P^n - \pi\|_{\mathrm{TV}} \leqslant C\varrho^n$$

where $\|\cdot\|_{\mathrm{TV}}$ is the total variation norm (to be defined later) between two measures.

- **1** μP^n is the law of X_n starting from $X_0 \sim \mu$
- **2** π is the law of X_n starting from $X_0 \sim \pi$
- Geometric ergodicity for Markov chains should not be confused with the notion of ergodic dynamical systems

CLT means that

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h))$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

Central Limit theorem

Recap on martingales
The Poisson equation
Central limit

Geometric ergodicity means that there exists constants C>0 and $\varrho\in(0,1)$ such that for all $n\in\mathbb{N}$,

$$\|\mu P^n - \pi\|_{\mathrm{TV}} \leqslant C\varrho^n$$

where $\|\cdot\|_{\mathrm{TV}}$ is the total variation norm (to be defined later) between two measures.

- **1** μP^n is the law of X_n starting from $X_0 \sim \mu$
- **2** π is the law of X_n starting from $X_0 \sim \pi$
- 3 Geometric ergodicity for Markov chains should not be confused with the notion of ergodic dynamical systems

CLT means that

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h))$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

Central Limit theorem

Recap on martingales
The Poisson equation
Central limit

Geometric ergodicity means that there exists constants C>0 and $\varrho\in(0,1)$ such that for all $n\in\mathbb{N}$,

$$\|\mu P^n - \pi\|_{\text{TV}} \leqslant C\varrho^n$$

where $\|\cdot\|_{\mathrm{TV}}$ is the total variation norm (to be defined later) between two measures.

- $\blacksquare \mu P^n$ is the law of X_n starting from $X_0 \sim \mu$
- 2 π is the law of X_n starting from $X_0 \sim \pi$
- 3 Geometric ergodicity for Markov chains should not be confused with the notion of ergodic dynamical systems

CLT means that

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h))$$

Theory and **Applications**

Coupling and total variation

- 1 Introduction
- 2 Coupling and total variation
- 4 Central Limit theorem

Coupling and total variation

Definition

Let (X, \mathcal{X}) be a measurable space and let ν, μ be two probability measures on (X, \mathcal{X}) . We define $\mathcal{C}(\mu, \nu)$, the coupling set associated to (μ, ν) as follows

$$\mathcal{C}(\mu,\nu) = \left\{ \gamma \in \mathsf{M}_1(\mathsf{X}^2) \, : \, \gamma(\cdot \times \mathsf{X}) = \mu(\cdot), \gamma(\mathsf{X} \times \cdot) = \nu(\cdot) \right\}$$

Any $\gamma \in \mathcal{C}(\mu, \nu)$ is called a coupling of (μ, ν) .

- 1 In words, γ is a coupling of (μ, ν) if the following
- **Example:** The law of (X, X) where $X \sim \mu$ is a coupling

Coupling and total variation

Definition

Let (X, \mathcal{X}) be a measurable space and let ν, μ be two probability measures on (X, \mathcal{X}) . We define $\mathcal{C}(\mu, \nu)$, the coupling set associated to (μ, ν) as follows

$$\mathcal{C}(\mu,\nu) = \left\{ \gamma \in \mathsf{M}_1(\mathsf{X}^2) \, : \, \gamma(\cdot \times \mathsf{X}) = \mu(\cdot), \gamma(\mathsf{X} \times \cdot) = \nu(\cdot) \right\}$$

Any $\gamma \in \mathcal{C}(\mu, \nu)$ is called a coupling of (μ, ν) .

- **1** In words, γ is a coupling of (μ, ν) if the following property holds: if $(X,Y) \sim \gamma$, then we have the marginal conditions: $X \sim \mu$ and $Y \sim \nu$.
- **Example:** The law of (X,X) where $X \sim \mu$ is a coupling

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

theorem

Recap on martingale
The Poisson equatio
Central limit

Definition

Let (X,\mathcal{X}) be a measurable space and let ν,μ be two probability measures on (X,\mathcal{X}) . We define $\mathcal{C}(\mu,\nu)$, the coupling set associated to (μ,ν) as follows

$$\mathcal{C}(\mu,\nu) = \left\{ \gamma \in \mathsf{M}_1(\mathsf{X}^2) \, : \, \gamma(\cdot \times \mathsf{X}) = \mu(\cdot), \gamma(\mathsf{X} \times \cdot) = \nu(\cdot) \right\}$$

Any $\gamma \in \mathcal{C}(\mu, \nu)$ is called a coupling of (μ, ν) .

- In words, γ is a coupling of (μ, ν) if the following property holds: if $(X,Y) \sim \gamma$, then we have the marginal conditions: $X \sim \mu$ and $Y \sim \nu$.
- **Example:** The law of (X, X) where $X \sim \mu$ is a coupling of (μ, μ) . Other example if $X \sim \mu$ and $Y \sim \mu$ and $X \perp Y$, then, the law of (X, Y) is a coupling of (μ, μ) .

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity Central Limi

Central Limi theorem

Recap on martingales
The Poisson equation
Central limit

Definition

Let (X, \mathcal{X}) be a measurable space and let ν, μ be two probability measures $\mu, \nu \in M_1(X)$. Then the total variation norm between μ and ν noted $\|\mu - \nu\|_{TV}$, is defined by

$$\|\mu - \nu\|_{\text{TV}} = 2\sup\{|\mu(f) - \nu(f)| : f \in \mathsf{F}(\mathsf{X}), 0 \leqslant f \leqslant 1\}$$
(1)

$$= \int |\varphi_0 - \varphi_1|(x)\zeta(\mathrm{d}x)$$
 (2)
= $2\inf \{\mathbb{P}(X \neq Y) : (X,Y) \sim \gamma \text{ where } \gamma \in \mathcal{C}(\mu,\nu)\}$ (3)

where
$$\mu(\mathrm{d}x) = \varphi_0(x)\zeta(\mathrm{d}x)$$
 and $\nu(\mathrm{d}x) = \varphi_1(x)\zeta(\mathrm{d}x)$.

Proof is given in the lecture notes

Theory and **Applications**

Geometric ergodicity

- 1 Introduction
- 2 Coupling and total variation
- 3 Geometric ergodicity
- 4 Central Limit theorem

S. Schechtman

Introduction

Coupling and total variation

Geometric ergodicity

Central Lim

Recap on martingales
The Poisson equation
Central limit

Assumption A1

[Minorizing condition] for all d>0, there exists $\epsilon_d>0$ and a probability measure ν_d such that

$$\forall x \in C_d := \{ V \leqslant d \}, \quad P(x, \cdot) \geqslant \epsilon_d \nu_d(\cdot)$$
 (4)

Assumption A2

Drift condition there exists a constants $(\lambda, b) \in (0, 1) \times \mathbb{R}^+$ such that for all $x \in X$.

$$PV(x) \leqslant \lambda V(x) + \delta$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

Geometric ergodicity

Central Lir

Recap on martingale
The Poisson equation
Central limit

Assumption A1

[Minorizing condition] for all d>0, there exists $\epsilon_d>0$ and a probability measure ν_d such that

$$\forall x \in C_d := \{ V \leqslant d \}, \quad P(x, \cdot) \geqslant \epsilon_d \nu_d(\cdot)$$
 (4)

Assumption A2

Drift condition there exists a constants $(\lambda, b) \in (0, 1) \times \mathbb{R}^+$ such that for all $x \in X$.

$$PV(x) \leq \lambda V(x) + b$$

S. Schechtman

Introduction

Coupling and total variation

Geometric ergodicity

Central Limit theorem

Recap on martingale

Theorem

(Forgetting of the initialization) Assume (A1) and (A2) for some measurable function $V \geqslant 1$. Then, there exists a constant $\varrho \in (0,1)$ such that for all $x,x' \in X$ and all $n \in \mathbb{N}$,

$$||P^n(x,\cdot) - P^n(x',\cdot)||_{\mathrm{TV}} \le \varrho^n \left[V(x) + V(x')\right].$$

Proof is hard. It is given in the lecture notes

S. Douc an S. Schechtma

Introduction

Coupling and total variation

Geometric ergodicity

Central Limit theorem

Recap on martingales
The Poisson equation
Central limit

Theorem

(Forgetting of the initialization) Assume (A1) and (A2) for some measurable function $V \geqslant 1$. Then, there exists a constant $\varrho \in (0,1)$ such that for all $x,x' \in X$ and all $n \in \mathbb{N}$,

$$||P^n(x,\cdot) - P^n(x',\cdot)||_{\text{TV}} \le \varrho^n [V(x) + V(x')].$$

Proof is hard. It is given in the lecture notes.

Schechtman

Introduction

Coupling and total variation

Geometric ergodicity

Central Limit theorem

Recap on martingales

The Poisson equation

Corollary

(Geometric ergodicity) Assume that (A1) and (A2) hold for some measurable function $V \geqslant 1$. Then, the Markov kernel P admits a unique invariant probability measure π . Moreover, $\pi(V) < \infty$ and there exists constants $(\varrho, \alpha) \in (0,1) \times \mathbb{R}^+$ such that for all $\mu \in M_1(X)$ and all $n \in \mathbb{N}$,

$$\|\mu P^n - \pi\|_{\mathrm{TV}} \leqslant \alpha \varrho^n \mu(V)$$

S. Schechtman

Introduction

Coupling and total variation

Geometric ergodicity

Central Limit theorem

Recap on martingales
The Poisson equation
Central limit

Corollary

(Geometric ergodicity) Assume that (A1) and (A2) hold for some measurable function $V \geqslant 1$. Then, the Markov kernel P admits a unique invariant probability measure π . Moreover, $\pi(V) < \infty$ and there exists constants $(\varrho, \alpha) \in (0,1) \times \mathbb{R}^+$ such that for all $\mu \in M_1(X)$ and all $n \in \mathbb{N}$,

$$\|\mu P^n - \pi\|_{\mathrm{TV}} \leqslant \alpha \varrho^n \mu(V)$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

Geometric ergodicity

Central Limit theorem

Recap on martingale
The Poisson equatio
Central limit

Corollary

(Geometric ergodicity) Assume that (A1) and (A2) hold for some measurable function $V \geqslant 1$. Then, the Markov kernel P admits a unique invariant probability measure π . Moreover, $\pi(V) < \infty$ and there exists constants $(\varrho, \alpha) \in (0,1) \times \mathbb{R}^+$ such that for all $\mu \in \mathsf{M}_1(\mathsf{X})$ and all $n \in \mathbb{N}$,

$$\|\mu P^n - \pi\|_{\text{TV}} \leqslant \alpha \varrho^n \mu(V).$$

S. Schechtmar

Introduction

total variation

Central Limit

Central Limi theorem

The Poisson equation

Central limit

- 1 Introduction
- 2 Coupling and total variation
- 3 Geometric ergodicity
- 4 Central Limit theorem
 - Recap on martingales
 - The Poisson equation
 - Central limit theorems

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

Central Lim theorem

Recap on martingale
The Poisson equation
Central limit

Let $(M_n)_{n\in\mathbb{N}}$ be a sequence of random variables on the same probability space $(\Omega,\mathcal{F},\mathbb{P})$ and let $(\mathcal{F}_n)_{n\in\mathbb{N}}$ be a filtration (ie for all $n\in\mathbb{N}$, $\mathcal{F}_n\subset\mathcal{F}_{n+1}\subset\mathcal{F}$).

Definition

We say that $(M_n)_{n\in\mathbb{N}}$ is a (\mathcal{F}_n) -martingale if for all $n\in\mathbb{N}$, M_n is integrable and for all $n\geqslant 1$,

$$\mathbb{E}[M_n|\mathcal{F}_{n-1}] = M_{n-1}$$

The increment process of the martingale is by definition $(M_{n+1}-M_n)_{n\in\mathbb{N}}$.

Theoren

If a sequence $(M_n)_{n\in\mathbb{N}}$ is a (\mathcal{F}_n) -martingale with stationary and square integrable increments, then

$$n^{-1/2}M_n \stackrel{\mathcal{L}_{\mathbb{P}}}{\Rightarrow} \mathcal{N}\left(0, \mathbb{E}[(M_1 - M_0)^2]\right)$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

Central Lim

theorem

Recap on martingales
The Poisson equation

Let $(M_n)_{n\in\mathbb{N}}$ be a sequence of random variables on the same probability space $(\Omega,\mathcal{F},\mathbb{P})$ and let $(\mathcal{F}_n)_{n\in\mathbb{N}}$ be a filtration (ie for all $n\in\mathbb{N}$, $\mathcal{F}_n\subset\mathcal{F}_{n+1}\subset\mathcal{F}$).

Definition

We say that $(M_n)_{n\in\mathbb{N}}$ is a (\mathcal{F}_n) -martingale if for all $n\in\mathbb{N}$, M_n is integrable and for all $n\geqslant 1$,

$$\mathbb{E}[M_n|\mathcal{F}_{n-1}] = M_{n-1}$$

The increment process of the martingale is by definition $(M_{n+1}-M_n)_{n\in\mathbb{N}}$.

Theorem

If a sequence $(M_n)_{n\in\mathbb{N}}$ is a (\mathcal{F}_n) -martingale with stationary and square integrable increments, then

$$n^{-1/2}M_n \stackrel{\mathcal{L}_{\mathbb{P}}}{\Rightarrow} \mathcal{N}\left(0, \mathbb{E}[(M_1 - M_0)^2]\right)$$

R. Douc and S. Schechtman

Introduction

Coupling and total variation

ergodicity

theorem

Recap on martingales
The Poisson equation
Central limit

Let $(M_n)_{n\in\mathbb{N}}$ be a sequence of random variables on the same probability space $(\Omega,\mathcal{F},\mathbb{P})$ and let $(\mathcal{F}_n)_{n\in\mathbb{N}}$ be a filtration (ie for all $n\in\mathbb{N}$, $\mathcal{F}_n\subset\mathcal{F}_{n+1}\subset\mathcal{F}$).

Definition

We say that $(M_n)_{n\in\mathbb{N}}$ is a (\mathcal{F}_n) -martingale if for all $n\in\mathbb{N}$, M_n is integrable and for all $n\geqslant 1$,

$$\mathbb{E}[M_n|\mathcal{F}_{n-1}] = M_{n-1}$$

The increment process of the martingale is by definition $(M_{n+1}-M_n)_{n\in\mathbb{N}}$.

Theorem

If a sequence $(M_n)_{n\in\mathbb{N}}$ is a (\mathcal{F}_n) -martingale with stationary and square integrable increments, then

$$n^{-1/2}M_n \stackrel{\mathcal{L}_{\mathbb{P}}}{\Rightarrow} \mathcal{N}\left(0, \mathbb{E}[(M_1 - M_0)^2]\right)$$

S. Schechtma

Introduction

Coupling and total variation

ergodicity

Central Limit

Recap on martingal

The Poisson equation

Definition

For a given measurable function h such that $\pi |h| < \infty$, the Poisson equation is defined by

$$\hat{h} - P\hat{h} = h - \pi(h) \tag{5}$$

A solution to the Poisson equation is a function \hat{h} for which (5) holds provided that $P|\hat{h}|(x) < \infty$ for all $x \in X$.

Geometric

theorem

Recap on martinga
The Poisson equati

Link between Poisson equations and Martingales

Define

$$S_n(h) = \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\}\$$

= $M_n(\hat{h}) + \hat{h}(X_0) - \hat{h}(X_n)$

where

$$M_n(\hat{h}) = \sum_{k=1}^{n} \left\{ \hat{h}(X_k) - P\hat{h}(X_{k-1}) \right\}$$
 (6)

$$\mathbb{E}[M_n(\hat{h})|\mathcal{F}_{n-1}] - M_{n-1}(h) = \mathbb{E}[\hat{h}(X_n) - P\hat{h}(X_{n-1})|\mathcal{F}_{n-1}]$$
$$= P\hat{h}(X_{n-1}) - P\hat{h}(X_{n-1}) = 0$$

Link between Poisson equations and Martingales

Define

$$S_n(h) = \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\}\$$

= $M_n(\hat{h}) + \hat{h}(X_0) - \hat{h}(X_n)$

$$M_n(\hat{h}) = \sum_{k=1}^{n} \left\{ \hat{h}(X_k) - P\hat{h}(X_{k-1}) \right\}$$
 (6)

$$\mathbb{E}[M_n(\hat{h})|\mathcal{F}_{n-1}] - M_{n-1}(h) = \mathbb{E}[\hat{h}(X_n) - P\hat{h}(X_{n-1})|\mathcal{F}_{n-1}]$$
$$= P\hat{h}(X_{n-1}) - P\hat{h}(X_{n-1}) = 0$$

ergodicity

Central Limi

theorem

Recap on martingales
The Poisson equation
Central limit

Link between Poisson equations and Martingales

Define

$$S_n(h) = \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\}\$$

= $M_n(\hat{h}) + \hat{h}(X_0) - \hat{h}(X_n)$

where

$$M_n(\hat{h}) = \sum_{k=1}^n \left\{ \hat{h}(X_k) - P\hat{h}(X_{k-1}) \right\}$$
 (6)

$$\mathbb{E}[M_n(\hat{h})|\mathcal{F}_{n-1}] - M_{n-1}(h) = \mathbb{E}[\hat{h}(X_n) - P\hat{h}(X_{n-1})|\mathcal{F}_{n-1}]$$
$$= P\hat{h}(X_{n-1}) - P\hat{h}(X_{n-1}) = 0$$

ergodicity

theorem

Recap on martingale
The Poisson equatio

Link between Poisson equations and Martingales

Define

$$S_n(h) = \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\}\$$

= $M_n(\hat{h}) + \hat{h}(X_0) - \hat{h}(X_n)$

where

$$M_n(\hat{h}) = \sum_{k=1}^n \left\{ \hat{h}(X_k) - P\hat{h}(X_{k-1}) \right\}$$
 (6)

$$\mathbb{E}[M_n(\hat{h})|\mathcal{F}_{n-1}] - M_{n-1}(h) = \mathbb{E}[\hat{h}(X_n) - P\hat{h}(X_{n-1})|\mathcal{F}_{n-1}]$$
$$= P\hat{h}(X_{n-1}) - P\hat{h}(X_{n-1}) = 0$$

ergodicity

Central Limit

Central Limit theorem

Recap on martingales
The Poisson equation
Central limit

Link between Poisson equations and Martingales

Define

$$S_n(h) = \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\}\$$

= $M_n(\hat{h}) + \hat{h}(X_0) - \hat{h}(X_n)$

where

$$M_n(\hat{h}) = \sum_{k=1}^n \left\{ \hat{h}(X_k) - P\hat{h}(X_{k-1}) \right\}$$
 (6)

$$\mathbb{E}[M_n(\hat{h})|\mathcal{F}_{n-1}] - M_{n-1}(h) = \mathbb{E}[\hat{h}(X_n) - P\hat{h}(X_{n-1})|\mathcal{F}_{n-1}]$$
$$= P\hat{h}(X_{n-1}) - P\hat{h}(X_{n-1}) = 0$$

Schooltman

Introductio

total variation

ergodicity

theorem

The Poisson equation

Theorem

Assume that (A1) and (A2) hold for some measurable function $V \geqslant 1$. Then, for any function h such that $|h| \leqslant V$, the function

$$\hat{h} = \sum_{n=0}^{\infty} \{ P^n h - \pi(h) \}$$
 (7)

is well-defined. Moreover, \hat{h} is a solution of the Poisson equation associated to h and there exists a constant γ such that for all $x \in X$.

$$|\hat{h}(x)| \leqslant \gamma V(x)$$

ergodicity
Central Lim

theorem

Recap on martingale
The Poisson equation

Theorem

(CLT with Poisson assumption) Let P be a Markov kernel with a unique invariant probability measure π . Let $h \in L^2(\pi)$. Assume that there exists a solution $\hat{h} \in L^2(\pi)$ to the Poisson equation $\hat{h} - P\hat{h} = h$. Then

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{R}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h))$$

where

$$\sigma_{\pi}^{2}(h) = \mathbb{E}_{\pi}[\{\hat{h}(X_{1}) - P\hat{h}(X_{0})\}^{2}]$$
(8)

Introduction

total variation

ergodicity Central Limit

Central Limit theorem

The Poisson equation

Theorem

(CLT with Poisson assumption) Let P be a Markov kernel with a unique invariant probability measure π . Let $h \in L^2(\pi)$. Assume that there exists a solution $\hat{h} \in L^2(\pi)$ to the Poisson equation $\hat{h} - P\hat{h} = h$. Then

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h)),$$

where

$$\sigma_{\pi}^{2}(h) = \mathbb{E}_{\pi}[\{\hat{h}(X_{1}) - P\hat{h}(X_{0})\}^{2}]$$
 (8)

S. Schechtman

Campling

Coupling and total variation

Geometric ergodicity

Central Lim

Recap on martingale

The Poisson equation

Theorem

(CLT with A1-A2 assumptions) Assume that (A1 and

(A2) hold for some function V. Then, for all measurable functions h such that $|h|^2 \leqslant V$,

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h)) ,$$

where

$$\sigma_{\pi}^{2}(h) = \mathbb{E}_{\pi}[\{\hat{h}(X_{1}) - P\hat{h}(X_{0})\}^{2}]$$
(9)

and \hat{h} is defined as in (7).

Schechtman

Introductio

Coupling and total variation

Geometric ergodicity

Central Limitheorem

Recap on martingal The Poisson equation Central limit

Theorem

(CLT with A1-A2 assumptions) Assume that (A1 and (A2) hold for some function V. Then, for all measurable functions h such that $|h|^2 \leq V$,

$$n^{-1/2} \sum_{k=0}^{n-1} \{h(X_k) - \pi(h)\} \stackrel{\mathcal{L}_{\mathbb{P}_{\pi}}}{\Rightarrow} \mathcal{N}(0, \sigma_{\pi}^2(h)) ,$$

where

$$\sigma_{\pi}^{2}(h) = \mathbb{E}_{\pi}[\{\hat{h}(X_{1}) - P\hat{h}(X_{0})\}^{2}]$$
(9)

and \hat{h} is defined as in (7).