Markov Chain Monte Carlo Theory and Practical applications Chapters 2 and 3

Randal Douc and Sholom Schechtman

Télécom SudParis, Institut Polytechnique de Paris randal.douc@telecom-sudparis.eu

Outline

1 Chap 2: Some recaps

2 Chap 2: Uniqueness of invariant probability measures

- 3 Chap 3: Dynamical systems
- 4 Chap 3: Markov chains and ergodicity

Outline

1 Chap 2: Some recaps

2 Chap 2: Uniqueness of invariant probability measures

- 3 Chap 3: Dynamical systems
- 4 Chap 3: Markov chains and ergodicity

() π -invariant if $\pi P = \pi$

2 π -reversible if $\pi(dx)P(x,dy) = \pi(dy)P(y,dx)$

3 π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

Output: X_0, \ldots, X_n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

① Draw independently $Y_{t+1} \sim \mathsf{Q}(X_t, \cdot)$ and $U_{t+1} \sim \mathrm{Unif}(0, 1)$

2 Set
$$X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

$$\textbf{1} \ \pi\text{-invariant if } \pi P = \pi$$

2
$$\pi$$
-reversible if $\pi(dx)P(x,dy) = \pi(dy)P(y,dx)$

3 π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

Output: X_0, \ldots, X_n

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

() Draw independently $Y_{t+1} \sim \mathsf{Q}(X_t, \cdot)$ and $U_{t+1} \sim \mathrm{Unif}(0, 1)$

2 Set
$$X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

$$\bullet \pi \text{-invariant if } \pi P = \pi$$

2
$$\pi$$
-reversible if $\pi(dx)P(x, dy) = \pi(dy)P(y, dx)$

3 π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

Output:
$$X_0, \ldots, X_n$$

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

① Draw independently $Y_{t+1} \sim \mathsf{Q}(X_t, \cdot)$ and $U_{t+1} \sim \mathrm{Unif}(0, 1)$

2 Set
$$X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

$$\bullet \pi \text{-invariant if } \pi P = \pi$$

2 π -reversible if $\pi(dx)P(x, dy) = \pi(dy)P(y, dx)$

3 π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: nOutput: X_0, \ldots, X_n

• At t = 0, draw X_0 according to some arbitrary distribution

• For
$$t \leftarrow 0$$
 to $n-1$

① Draw independently $Y_{t+1} \sim \mathsf{Q}(X_t, \cdot)$ and $U_{t+1} \sim \mathrm{Unif}(0, 1)$

2 Set
$$X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

$$\bullet \pi \text{-invariant if } \pi P = \pi$$

- **2** π -reversible if $\pi(dx)P(x,dy) = \pi(dy)P(y,dx)$
- **3** π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

Output: $X_0, ..., X_n$

• At t = 0, draw X_0 according to some arbitrary distribution

• For
$$t \leftarrow 0$$
 to $n-1$

1 Draw independently $Y_{t+1} \sim \mathbf{Q}(X_t, \cdot)$ and $U_{t+1} \sim \text{Unif}(0, 1)$

2 Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

$$\bullet \pi \text{-invariant if } \pi P = \pi$$

2 π -reversible if $\pi(dx)P(x,dy) = \pi(dy)P(y,dx)$

3 π -reversible implies π -invariance.

The Metropolis-Hastings algorithm

Input: n

Output: $X_0, ..., X_n$

- At t = 0, draw X_0 according to some arbitrary distribution
- For $t \leftarrow 0$ to n-1

1 Draw independently $Y_{t+1} \sim \mathbf{Q}(X_t, \cdot)$ and $U_{t+1} \sim \text{Unif}(0, 1)$ 2 Set $X_{t+1} = \begin{cases} Y_{t+1} & \text{if } U_{t+1} \leq \alpha(X_t, Y_{t+1}) \\ X_t & \text{otherwise} \end{cases}$

where
$$\alpha(x,y) = \alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$

The Markov kernel associated to $\{X_n : n \in \mathbb{N}\}$ is given by $P^{MH}_{(\pi O)}(x, \mathrm{d}y) = Q(x, \mathrm{d}y)\alpha(x, y) + \bar{\alpha}(x)\delta_x(\mathrm{d}y).$ where $\bar{\alpha}(x) = 1 - \int_{\mathbf{Y}} Q(x, \mathrm{d}y) \alpha(x, y)$. $MH(x,y) \qquad \min \left(\pi(y)q(y,x) \right)$

•
$$\left[\frac{\alpha}{\pi(x,y)} - \min\left(\frac{\pi(x)q(x,y)}{\pi(x)q(x,y)}, 1\right)\right]$$
 or
 $\alpha^{b}(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)}$ satisfy (1).
• For all α satisfying (1), we have $\alpha \leqslant \alpha^{MH}$. To be done on the blackboard.

The Markov kernel associated to $\{X_n : n \in \mathbb{N}\}$ is given by $P^{MH}_{(\pi, \Omega)}(x, \mathrm{d}y) = Q(x, \mathrm{d}y)\alpha(x, y) + \bar{\alpha}(x)\delta_x(\mathrm{d}y).$ where $\bar{\alpha}(x) = 1 - \int_{\mathbf{x}} Q(x, \mathrm{d}y) \alpha(x, y)$. Lemma If the detailed balance condition $\pi(\mathrm{d}x)Q(x,\mathrm{d}y)\alpha(x,y) = \pi(\mathrm{d}y)Q(y,\mathrm{d}x)\alpha(y,x)$ (1)is satisfied, then $P_{(\pi, \Omega)}^{MH}$ is π -reversible and hence, π -invariant. • $\alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$ or

 $\overline{\alpha^b(x,y)} = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)} \text{ satisfy (1)}.$

• For all α satisfying (1), we have $\alpha \leqslant \alpha^{MH}$. To be done on the blackboard.

The Markov kernel associated to $\{X_n : n \in \mathbb{N}\}$ is given by $P^{MH}_{\langle \pi, Q \rangle}(x, \mathrm{d}y) = Q(x, \mathrm{d}y)\alpha(x, y) + \bar{\alpha}(x)\delta_x(\mathrm{d}y).$ where $\bar{\alpha}(x) = 1 - \int_X Q(x, \mathrm{d}y)\alpha(x, y).$ Lemma
If the detailed balance condition

$$\pi(\mathrm{d}x)Q(x,\mathrm{d}y)\alpha(x,y) = \pi(\mathrm{d}y)Q(y,\mathrm{d}x)\alpha(y,x) \tag{1}$$

is satisfied, then $P^{MH}_{\langle \pi, Q \rangle}$ is $\pi\text{-reversible}$ and hence, $\pi\text{-invariant}.$

•
$$\alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right) \text{ or }$$

$$\alpha^{b}(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)} \text{ satisfy (1).}$$

• For all α satisfying (1), we have $\alpha \leq \alpha^{MH}$. To be done on the blackboard.

The Markov kernel associated to $\{X_n : n \in \mathbb{N}\}$ is given by $P^{MH}_{\langle \pi, Q \rangle}(x, \mathrm{d}y) = Q(x, \mathrm{d}y)\alpha(x, y) + \bar{\alpha}(x)\delta_x(\mathrm{d}y).$ where $\bar{\alpha}(x) = 1 - \int_X Q(x, \mathrm{d}y)\alpha(x, y).$ Lemma
If the detailed balance condition

$$\pi(\mathrm{d}x)Q(x,\mathrm{d}y)\alpha(x,y) = \pi(\mathrm{d}y)Q(y,\mathrm{d}x)\alpha(y,x) \tag{1}$$

is satisfied, then $P^{MH}_{\langle \pi, Q \rangle}$ is $\pi\text{-reversible}$ and hence, $\pi\text{-invariant}.$

•
$$\alpha^{MH}(x,y) = \min\left(\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)},1\right)$$
or
$$\alpha^{b}(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)}$$
satisfy (1).

• For all α satisfying (1), we have $\alpha \leq \alpha^{MH}$. To be done on the blackboard.

Outline

① Chap 2: Some recaps

2 Chap 2: Uniqueness of invariant probability measures

- 3 Chap 3: Dynamical systems
- 4 Chap 3: Markov chains and ergodicity

Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure $\mu\in\mathsf{M}_+(\mathsf{X})$ satisfying the following property:

• For all $A \in \mathcal{X}$ such that $\mu(A) > 0$ and for all $x \in X$, there exists $n \in \mathbb{N}$ such that $P^n(x, A) > 0$.

Then, P admits at most one invariant probability measure.

If condition (\star) is satisfied, we say that P is μ -irreducible.

Application: Metropolis-Hastings algorithms

Assume that

• $Q(x, dy) = q(x, y)\lambda(dy)$ and $\pi(dx) = \pi(x)\lambda(dx)$ with q > 0 and $\pi > 0$.

Then $P^{MH}_{\langle \pi, Q \rangle}$ admits π as its unique probability measure

Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure $\mu\in\mathsf{M}_+(\mathsf{X})$ satisfying the following property:

• For all $A \in \mathcal{X}$ such that $\mu(A) > 0$ and for all $x \in X$, there exists $n \in \mathbb{N}$ such that $P^n(x, A) > 0$.

Then, P admits at most one invariant probability measure.

If condition (*) is satisfied, we say that P is $\mu\text{-irreducible}.$

Application: Metropolis-Hastings algorithms

Assume that

• $Q(x, dy) = q(x, y)\lambda(dy)$ and $\pi(dx) = \pi(x)\lambda(dx)$ with q > 0 and $\pi > 0$.

Then $P^{MH}_{\langle \pi, Q \rangle}$ admits π as its unique probability measure

Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure $\mu\in\mathsf{M}_+(\mathsf{X})$ satisfying the following property:

• For all $A \in \mathcal{X}$ such that $\mu(A) > 0$ and for all $x \in X$, there exists $n \in \mathbb{N}$ such that $P^n(x, A) > 0$.

Then, P admits at most one invariant probability measure.

If condition (\star) is satisfied, we say that P is μ -irreducible.

Application: Metropolis-Hastings algorithms

Assume that

• $Q(x, dy) = q(x, y)\lambda(dy)$ and $\pi(dx) = \pi(x)\lambda(dx)$ with q > 0 and $\pi > 0$.

Then $P^{MH}_{\langle \pi, Q \rangle}$ admits π as its unique probability measure.

Proof of the uniqueness of the invariant probability measure for irreducible Markov chains

The following lemma is useful for the proof...

Lemma

If P admits two distinct invariant probability measures, it also admits distinct invariant probability measures π_0 and π_1 that are mutually singular, i.e., such that there exists $A \in \mathcal{X}$ such that $\pi_0(A) = \pi_1(A^c) = 0.$

To be done on the blackboard.

Proof of the uniqueness of the invariant probability measure for irreducible Markov chains

The following lemma is useful for the proof...

Lemma

If P admits two distinct invariant probability measures, it also admits distinct invariant probability measures π_0 and π_1 that are mutually singular, i.e., such that there exists $A \in \mathcal{X}$ such that $\pi_0(A) = \pi_1(A^c) = 0.$

To be done on the blackboard.

Outline

1 Chap 2: Some recaps

2 Chap 2: Uniqueness of invariant probability measures

3 Chap 3: Dynamical systems

4 Chap 3:Markov chains and ergodicity

Dynamical systems

Definition

(Dynamical systems) A dynamical system \mathcal{D} is a quadruplet $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $T : \Omega \to \Omega$ is a measurable mapping such that $\boxed{\mathbb{P} = \mathbb{P} \circ T^{-1}}$.

_emma

(Invariant sets) The collection of sets $\mathcal{I} = \{A \in \mathcal{F} : \mathbf{1}_A = \mathbf{1}_A \circ T\}$ is a σ -field and any set in \mathcal{I} is called an invariant set.

Definition

(Ergodicity) A dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, T)$ is said to be **ergodic** if invariant sets are \mathbb{P} -trivial that is if $A \in \mathcal{I}$ then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Dynamical systems

Definition

(Dynamical systems) A dynamical system \mathcal{D} is a quadruplet $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $T : \Omega \to \Omega$ is a measurable mapping such that $\boxed{\mathbb{P} = \mathbb{P} \circ T^{-1}}$.

Lemma

(Invariant sets) The collection of sets $\mathcal{I} = \{A \in \mathcal{F} : \mathbf{1}_A = \mathbf{1}_A \circ T\}$ is a σ -field and any set in \mathcal{I} is called an invariant set.

Definition

(Ergodicity) A dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, T)$ is said to be ergodic if invariant sets are \mathbb{P} -trivial that is if $A \in \mathcal{I}$ then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Dynamical systems

Definition

(Dynamical systems) A dynamical system \mathcal{D} is a quadruplet $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $T : \Omega \to \Omega$ is a measurable mapping such that $\boxed{\mathbb{P} = \mathbb{P} \circ T^{-1}}$.

Lemma

(Invariant sets) The collection of sets $\mathcal{I} = \{A \in \mathcal{F} : \mathbf{1}_A = \mathbf{1}_A \circ T\}$ is a σ -field and any set in \mathcal{I} is called an invariant set.

Definition

(Ergodicity) A dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, T)$ is said to be ergodic if invariant sets are \mathbb{P} -trivial that is if $A \in \mathcal{I}$ then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

The Birkhoff theorem

Theorem

(The Birkhoff theorem) Let $\mathcal{D} = (\Omega, \mathcal{F}, \mathbb{P}, T)$ be an ergodic dynamical system and let $h \in L_1(\Omega)$. Then,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h \circ T^k = \mathbb{E}[h] , \quad \mathbb{P} - a.s.$$

Outline

- 1 Chap 2: Some recaps
- 2 Chap 2: Uniqueness of invariant probability measures
- 3 Chap 3: Dynamical systems
- 4 Chap 3: Markov chains and ergodicity

Let S be the shift operator: if $\omega = (\omega_k)_{k \in \mathbb{N}} \in \mathsf{X}^{\mathbb{N}}$, we set $S(\omega) = \omega' \in \mathsf{X}^{\mathbb{N}}$ where $\omega'_k = \omega_{k+1}$ for all $k \in \mathbb{N}$.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability measure π . Then, the quadruplet $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is a dynamical system.

Theorem (MC and ergodicity)

Let P be a Markov kernel on $X \times X$. Assume that P admits a unique invariant probability measure π . Then, the dynamical system $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is ergodic.

The proof of the Theorem will be done on the blackboard.

Let S be the shift operator: if $\omega = (\omega_k)_{k \in \mathbb{N}} \in \mathsf{X}^{\mathbb{N}}$, we set $S(\omega) = \omega' \in \mathsf{X}^{\mathbb{N}}$ where $\omega'_k = \omega_{k+1}$ for all $k \in \mathbb{N}$.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability measure π . Then, the quadruplet $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is a dynamical system.

Theorem (MC and ergodicity)

Let P be a Markov kernel on $X \times X$. Assume that P admits a unique invariant probability measure π . Then, the dynamical system $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is ergodic.

The proof of the Theorem will be done on the blackboard.

Let S be the shift operator: if $\omega = (\omega_k)_{k \in \mathbb{N}} \in \mathsf{X}^{\mathbb{N}}$, we set $S(\omega) = \omega' \in \mathsf{X}^{\mathbb{N}}$ where $\omega'_k = \omega_{k+1}$ for all $k \in \mathbb{N}$.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability measure π . Then, the quadruplet $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is a dynamical system.

Theorem (MC and ergodicity)

Let P be a Markov kernel on $X \times X$. Assume that P admits a unique invariant probability measure π . Then, the dynamical system $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\pi}, S)$ is ergodic.

The proof of the Theorem will be done on the blackboard.

Theorem (The Birkhoff theorem for MC)

Let *P* be a Markov kernel admitting a unique invariant probability measure π . Then, for all $h \in F(X^{\mathbb{N}})$ such that $\mathbb{E}_{\pi}[|h|] < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_{k:\infty}) = \mathbb{E}_{\pi}[h], \quad \mathbb{P}_{\pi} - a.s.$$

Corollary (LLN Starting from stationarity)

Let P be a Markov kernel admitting a unique invariant probability measure π . Then, for all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(dx)|f(x)| < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f) \,, \quad \mathbb{P}_{\pi} - a.s.$$

Theorem (The Birkhoff theorem for MC)

Let *P* be a Markov kernel admitting a unique invariant probability measure π . Then, for all $h \in F(X^{\mathbb{N}})$ such that $\mathbb{E}_{\pi}[|h|] < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_{k:\infty}) = \mathbb{E}_{\pi}[h], \quad \mathbb{P}_{\pi} - a.s.$$

Corollary (LLN Starting from stationarity)

Let *P* be a Markov kernel admitting a unique invariant probability measure π . Then, for all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(dx)|f(x)| < \infty$, we have

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f), \quad \mathbb{P}_{\pi} - a.s.$$
 (2)

Corollary (Other starting points)

Let P be a Markov kernel admitting a unique invariant probability measure π . Then, for all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(dx)|f(x)| < \infty$, we have for π -almost all $x \in X$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f) , \quad \mathbb{P}_x - a.s.$$
 (3)

Assume that $Q(x, dy) = q(x, y)\lambda(dy)$ and $\pi(dy) = \pi(y)\lambda(dy)$ where q > 0, $\pi > 0$ and λ is a σ -finite measure on (X, \mathcal{X}) .

Theorem

The Markov chain $\{X_n : n \in \mathbb{N}\}\$ generated by the Metropolis-Hastings algorithm is such that: for all initial distributions $\nu \in M_1(X)$ and all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(\mathrm{d}x)|f(x)| < \infty$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f) \,, \quad \mathbb{P}_{\nu} - a.s \tag{4}$$

What if P is not the Markov kernel of a Metropolis-Hastings algorithm?

Theorem

If P is a Markov kernel on $X \times \mathcal{X}$ that admits a unique invariant probability measure π . Assume in addition that for all bounded functions h and all measures $\nu \in M_1(X)$,

$$\lim_{n \to \infty} \nu P^n h = \pi(h) \tag{5}$$

Then, for all initial distributions $\nu \in M_1(X)$ and all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(dx)|f(x)| < \infty$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f) \,, \quad \mathbb{P}_{\nu} - a.s \tag{6}$$

What if P is not the Markov kernel of a Metropolis-Hastings algorithm?

Theorem

If P is a Markov kernel on $X \times \mathcal{X}$ that admits a unique invariant probability measure π . Assume in addition that for all bounded functions h and all measures $\nu \in M_1(X)$,

$$\lim_{n \to \infty} \nu P^n h = \pi(h) \tag{5}$$

Then, for all initial distributions $\nu \in M_1(X)$ and all $f \in F(X)$ such that $\pi(|f|) = \int_X \pi(dx)|f(x)| < \infty$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f(X_k) = \pi(f) \,, \quad \mathbb{P}_{\nu} - a.s \tag{6}$$