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Recall that a Markov kernel P is

1 π-invariant if πP = π

2 π-reversible if π(dx)P (x, dy) = π(dy)P (y,dx)

3 π-reversible implies π-invariance.

The Metropolis-Hastings algorithm

Input: n
Output: X0, . . . , Xn

• At t = 0, draw X0 according to some arbitrary distribution
• For t← 0 to n− 1

1 Draw independently Yt+1 ∼ Q (Xt, ·) and Ut+1 ∼ Unif(0, 1)

2 Set Xt+1 =

{
Yt+1 if Ut+1 ⩽ α(Xt, Yt+1)

Xt otherwise

where α(x, y) = αMH(x, y) = min
(
π(y)q(y,x)
π(x)q(x,y) , 1

)
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The Markov kernel associated to {Xn : n ∈ N} is given by

PMH
⟨π,Q⟩(x, dy) = Q(x,dy)α(x, y) + ᾱ(x)δx(dy).

where ᾱ(x) = 1−
∫
XQ(x,dy)α(x, y).

Lemma

If the detailed balance condition

π(dx)Q(x,dy)α(x, y) = π(dy)Q(y,dx)α(y, x) (1)

is satisfied, then PMH
⟨π,Q⟩ is π-reversible and hence, π-invariant.

• αMH(x, y) = min
(
π(y)q(y,x)
π(x)q(x,y) , 1

)
or

αb(x, y) = π(y)q(y,x)
π(x)q(x,y)+π(y)q(y,x) satisfy (1).

• For all α satisfying (1), we have α ⩽ αMH . To be done on
the blackboard.
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Uniqueness under irreducibility assumptions

Proposition: Irreducible Markov kernels

Assume that there exists a non-null measure µ ∈ M+(X) satisfying
the following property:

(⋆) For all A ∈ X such that µ(A) > 0 and for all x ∈ X, there
exists n ∈ N such that Pn(x,A) > 0.

Then, P admits at most one invariant probability measure.

If condition (⋆) is satisfied, we say that P is µ-irreducible.

Application: Metropolis-Hastings algorithms

Assume that

• Q(x, dy) = q(x, y)λ(dy) and π(dx) = π(x)λ(dx) with
q > 0 and π > 0 .

Then PMH
⟨π,Q⟩ admits π as its unique probability measure .
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Proof of the uniqueness of the invariant probability
measure for irreducible Markov chains

The following lemma is useful for the proof...

Lemma

If P admits two distinct invariant probability measures, it also
admits distinct invariant probability measures π0 and π1 that are
mutually singular, i.e., such that there exists A ∈ X such that
π0(A) = π1(A

c) = 0.

To be done on the blackboard.
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Dynamical systems

Definition

(Dynamical systems) A dynamical system D is a quadruplet
D = (Ω,F ,P, T ) where (Ω,F ,P) is a probability space and

T : Ω→ Ω is a measurable mapping such that P = P ◦ T−1 .

Lemma

(Invariant sets) The collection of sets
I = {A ∈ F : 1A = 1A ◦ T} is a σ-field and any set in I is called
an invariant set.

Definition

(Ergodicity) A dynamical system (Ω,F ,P, T ) is said to be
ergodic if invariant sets are P-trivial that is if A ∈ I then either
P(A) = 0 or P(A) = 1.
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The Birkhoff theorem

Theorem

(The Birkhoff theorem) Let D = (Ω,F ,P, T ) be an
ergodic dynamical system and let h ∈ L1(Ω). Then,

lim
n→∞

n−1
n−1∑
k=0

h ◦ T k = E[h] , P− a.s.
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Let S be the shift operator: if ω = (ωk)k∈N ∈ XN, we set
S(ω) = ω′ ∈ XN where ω′

k = ωk+1 for all k ∈ N.

Lemma (MC and dynamical systems)

Let P be a Markov kernel admitting an invariant probability
measure π. Then, the quadruplet (XN,X⊗N,Pπ, S) is a
dynamical system .

Theorem (MC and ergodicity)

Let P be a Markov kernel on X×X . Assume that P admits a
unique invariant probability measure π. Then, the dynamical
system (XN,X⊗N,Pπ, S) is ergodic .

The proof of the Theorem will be done on the blackboard.
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Theorem (The Birkhoff theorem for MC)

Let P be a Markov kernel admitting a unique invariant probability
measure π. Then, for all h ∈ F(XN) such that Eπ[|h|] <∞, we
have

lim
n→∞

n−1
n−1∑
k=0

h(Xk:∞) = Eπ[h] , Pπ − a.s.

Corollary (LLN Starting from stationarity)

Let P be a Markov kernel admitting a unique invariant probability
measure π. Then, for all f ∈ F(X) such that
π(|f |) =

∫
X π(dx)|f(x)| <∞, we have

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pπ − a.s. (2)
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Corollary (Other starting points)

Let P be a Markov kernel admitting a unique invariant probability
measure π. Then, for all f ∈ F(X) such that
π(|f |) =

∫
X π(dx)|f(x)| <∞, we have for π-almost all x ∈ X ,

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Px − a.s. (3)
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Assume that Q(x, dy) = q(x, y)λ(dy) and π(dy) = π(y)λ(dy)
where q > 0, π > 0 and λ is a σ-finite measure on (X,X ).

Theorem

The Markov chain {Xn : n ∈ N} generated by the
Metropolis-Hastings algorithm is such that: for all initial
distributions ν ∈ M1(X) and all f ∈ F(X) such that
π(|f |) =

∫
X π(dx)|f(x)| <∞,

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pν − a.s (4)
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What if P is not the Markov kernel of a Metropolis-Hastings
algorithm?

Theorem

If P is a Markov kernel on X×X that admits a unique invariant

probability measure π. Assume in addition that for all bounded
functions h and all measures ν ∈ M1(X),

lim
n→∞

νPnh = π(h) (5)

Then, for all initial distributions ν ∈ M1(X) and all f ∈ F(X)
such that π(|f |) =

∫
X π(dx)|f(x)| <∞,

lim
n→∞

n−1
n−1∑
k=0

f(Xk) = π(f) , Pν − a.s (6)
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