Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:useful-bounds

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:useful-bounds [2022/11/17 17:03]
rdouc [Doob's inequalities]
world:useful-bounds [2022/11/18 11:14] (current)
rdouc [Doob's inequalities]
Line 74: Line 74:
  
 ==== Maximal Kolmogorov inequality ==== ==== Maximal Kolmogorov inequality ====
 +<WRAP center round tip 80%>
 Let \((M_k)_{k\in\nset}\) be a square integrable \((\mcf_k)_{k\in\nset}\)-martingale. Then,  Let \((M_k)_{k\in\nset}\) be a square integrable \((\mcf_k)_{k\in\nset}\)-martingale. Then, 
 \begin{equation} \begin{equation}
Line 79: Line 80:
 \end{equation} \end{equation}
  
-$\bproof$+</​WRAP>​
  
 +$\bproof$
 +<note tip>
 +We provide a complete proof here but actually, we can also apply Doob's inequality below to the non-negative submartingale $M_n^2$
 +</​note>​
 Let \(\sigma=\inf\set{k\geq 1}{|M_k| \geq \alpha}\) with the convention that $\inf \emptyset=\infty$. ​ Let \(\sigma=\inf\set{k\geq 1}{|M_k| \geq \alpha}\) with the convention that $\inf \emptyset=\infty$. ​
 Then,  Then, 
Line 111: Line 116:
 </​WRAP>​ </​WRAP>​
 === Proof === === Proof ===
-We prove **(ii)**. ​Define $\tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon}$ +Define $\tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon}$ ​with the convention that $\inf \emptyset =\infty$. Then,  
-We prove **(ii)**. Define ​$\tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon}$ ​with the convention ​that $\inf \emptyset =\infty$. Then+\begin{align} \label{eq:​fond} 
 +\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}= \epsilon \PP\lr{\tau_\epsilon \leq n}&\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}] 
 +\end{align} 
 + 
 +  * We prove **(i)**. From \eqref{eq:​fond},​ we have  
 +$
 +\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon} \leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}] \leq \PE[X_{\tau_\epsilon \wedge n}]=\PE\lrb{\PE[X_{\tau_\epsilon \wedge n}|\mcf_0]}\leq \PE[X_{\tau_\epsilon ​\wedge 0}]=\PE[X_0] 
 +$
 +where we used in the second inequality ​that $(X_n)$ is non-negative and in the third inequality that $(X_{\tau_\epsilon ​\wedge n})is a supermartingaleThe proof then follows by letting $n$ goes to infinity.  
 +  * We now turn to the proof of **(ii)**. Using \eqref{eq:​fond},
 \begin{align*} \begin{align*}
-&\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon} \leq \PE[X_{\tau_\epsilon} \indacc{\tau_\epsilon \leq n}]=\sum_{k=0}^n \PE[X_k \indiacc{\tau_\epsilon=k}]\\ +\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}&\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}]=\sum_{k=0}^n \PE[X_k \indiacc{\tau_\epsilon=k}]\\ 
-&\leq \sum_{k=0}^n \PE[\PE[X_n|\mcf_k] \indiacc{\tau_\epsilon=k}]=\sum_{k=0}^n \PE[X_n \indiacc{\tau_\epsilon=k}]=\PE[X_n \indiacc{\tau_\epsilon\leq n}] +&\leq \sum_{k=0}^n \PE[\PE[X_n|\mcf_k] \indiacc{\tau_\epsilon=k}]=\sum_{k=0}^n \PE[X_n \indiacc{\tau_\epsilon=k}]=\PE[X_n \indiacc{\tau_\epsilon\leq n}] \leq  \PE[X_n]
 \end{align*} \end{align*}
 +where we used in the last inequality that $(X_n)$ is non-negative. The proof is completed. ​
 +$\eproof$
world/useful-bounds.1668700996.txt.gz · Last modified: 2022/11/17 17:03 by rdouc