Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:robbins_monro

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:robbins_monro [2021/03/15 01:21]
rdouc [Statement]
world:robbins_monro [2023/02/10 18:17] (current)
rdouc [Proof of $\mathbb{P}(A=0)=1$.]
Line 5: Line 5:
  <​WRAP center round box 80%>  <​WRAP center round box 80%>
   * $f$ is a bounded and continuous function ​   * $f$ is a bounded and continuous function ​
-  * $f(x)(x-x_*)>​0$ for all $x\in \Xset$+  * $f(x)(x-x_*)>​0$ for all $x\neq x_* \in \Xset$
 </​WRAP>​ </​WRAP>​
 We assume there exist a Markov kernel $K$ on $\Xset \times ​ \Xsigma$ and a sequence $\seq{\gamma_k}{k\in\nset}$ of real numbers such that We assume there exist a Markov kernel $K$ on $\Xset \times ​ \Xsigma$ and a sequence $\seq{\gamma_k}{k\in\nset}$ of real numbers such that
Line 19: Line 19:
 Let $X_0$ be a random variable such that $\PE[X^2_0]<​\infty$. Define iteratively the sequence <color red>​$$X_{n+1}=X_{n}-\gamma_{n+1} U_{n+1}$$</​color>​ where Let $X_0$ be a random variable such that $\PE[X^2_0]<​\infty$. Define iteratively the sequence <color red>​$$X_{n+1}=X_{n}-\gamma_{n+1} U_{n+1}$$</​color>​ where
 $U_{n+1}|_{\mcf_n}\sim K (X_n,​\cdot)$ and $\mcf_n=\sigma(X_0,​\ldots,​X_n)$. ​ $U_{n+1}|_{\mcf_n}\sim K (X_n,​\cdot)$ and $\mcf_n=\sigma(X_0,​\ldots,​X_n)$. ​
-The aim of this short note is to prove that $X_n \psconv ​0$. We follow a version of the proof proposed by François Roueff. ​+The aim of this short note is to prove that $X_n \psconv ​x_*$. We follow a version of the proof proposed by François Roueff. ​
  
 ====== Proof ====== ====== Proof ======
Line 38: Line 38:
 ==== Convergence of $(X_n-x_*)^2$ ==== ==== Convergence of $(X_n-x_*)^2$ ====
 Considering \eqref{eq:​def:​Sn},​ to obtain the convergence of $(X_n-x_*)^2$,​ we only need to prove that $S_n$ and $\sum_{k=1}^n \gamma_k^2 U_k^2$ converge $\PP$-a.s. as $n$ goes to infinity. ​ Considering \eqref{eq:​def:​Sn},​ to obtain the convergence of $(X_n-x_*)^2$,​ we only need to prove that $S_n$ and $\sum_{k=1}^n \gamma_k^2 U_k^2$ converge $\PP$-a.s. as $n$ goes to infinity. ​
-  - The convergence of $(S_n)$ follows from+  - The convergence of $(S_n)$ follows from (see [[world:​martingale#​submartingale|some results on limits of martingales]])
       * $(S_n)$ is a submartingale since  $\CPE{S_n-S_{n-1}}{\mcf_{n-1}}=2\gamma_n f (X_{n-1}) (X_{n-1}-x_*) \geq 0$       * $(S_n)$ is a submartingale since  $\CPE{S_n-S_{n-1}}{\mcf_{n-1}}=2\gamma_n f (X_{n-1}) (X_{n-1}-x_*) \geq 0$
       * $\sup_n \PE[S_n^+] \leq \PE[(X_0-x_*)^2]+\sum_{k=1}^n \gamma_k^2 \underbrace{\PE[U_k^2]}_{\leq M}<​\infty$.  ​       * $\sup_n \PE[S_n^+] \leq \PE[(X_0-x_*)^2]+\sum_{k=1}^n \gamma_k^2 \underbrace{\PE[U_k^2]}_{\leq M}<​\infty$.  ​
Line 59: Line 59:
   - $\lrcb{\delta/​2 < |A| <\delta} \subset \lrcb{W_\infty\eqdef \lim_n W_n=\infty}$   - $\lrcb{\delta/​2 < |A| <\delta} \subset \lrcb{W_\infty\eqdef \lim_n W_n=\infty}$
   - $\PP(W_\infty=\infty)=0$. ​   - $\PP(W_\infty=\infty)=0$. ​
-To get the second property (2), note that $M_n\leq S_n$ so that $\sup_{n\in\nset} \PE[M_n^+]\leq \sup_{n\in\nset} \PE[S_n^+]<​\infty$. Finally, $(M_n)$ is a martingale, with a positive part which is uniformly bounded in $L^1$. Therefore, $(M_n)$ converges $\PP$-a.s. And since $W_n=S_n-M_n$,​ it also implies that $(W_n)$ converges a.s. so that $\PP(W_\infty=\infty)=0$. ​  +To get the second property (2), note that $M_n\leq S_n$ so that $\sup_{n\in\nset} \PE[M_n^+]\leq \sup_{n\in\nset} \PE[S_n^+]<​\infty$. Finally, $(M_n)$ is a martingale, with a positive part which is uniformly bounded in $L^1$. Therefore ​(see for example [[https://​wiki.randaldouc.xyz/​doku.php?​id=world:​martingale| some convergence properties for martingales]], $(M_n)$ converges $\PP$-a.s. And since $W_n=S_n-M_n$,​ it also implies that $(W_n)$ converges a.s. so that $\PP(W_\infty=\infty)=0$. ​  
  
 We now turn to the first property (1). Let $\omega \in \lrcb{\delta/​2 < |A| <​\delta}$. Then, there exists $N(\omega)$ such that for all $n\geq N(\omega)$, $X_n\in B$ where $B=\set{x\in\Xset}{\delta/​2 <​(x-x_*)^2<​\delta}$. Moreover, by continuity of $f$,  ​ We now turn to the first property (1). Let $\omega \in \lrcb{\delta/​2 < |A| <​\delta}$. Then, there exists $N(\omega)$ such that for all $n\geq N(\omega)$, $X_n\in B$ where $B=\set{x\in\Xset}{\delta/​2 <​(x-x_*)^2<​\delta}$. Moreover, by continuity of $f$,  ​
world/robbins_monro.1615767669.txt.gz · Last modified: 2022/03/16 01:37 (external edit)