Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:non-geometric

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
world:non-geometric [2024/03/05 10:07]
rdouc
world:non-geometric [2024/03/27 17:27] (current)
rdouc [Proof]
Line 20: Line 20:
 Moreover, ​ Moreover, ​
   * Using that $C$ is a small set, we can easily show that $\sup_{x \in C} P(x,​\{x\})<​1$ (indeed, if $C\cap A_\eta$ contains two distincts elements $x,x'$ for $\eta$ sufficiently small, then $\epsilon \nu(\{x\}^c) \leq P^m(x,​\{x\}^c) \leq 1-\eta^m$ showing that $\nu(\{x\}^c) + \nu(\{x'​\}^c)$ is arbitrary small which is not possible since this sum is bounded from below by $\nu(\Xset)$). ​   * Using that $C$ is a small set, we can easily show that $\sup_{x \in C} P(x,​\{x\})<​1$ (indeed, if $C\cap A_\eta$ contains two distincts elements $x,x'$ for $\eta$ sufficiently small, then $\epsilon \nu(\{x\}^c) \leq P^m(x,​\{x\}^c) \leq 1-\eta^m$ showing that $\nu(\{x\}^c) + \nu(\{x'​\}^c)$ is arbitrary small which is not possible since this sum is bounded from below by $\nu(\Xset)$). ​
-  * This allows to choose $B=A_\eta$ with $\eta$ chosen sufficiently close to $1$ so that $B \cap A_\eta=\emptyset$. Then, there exists $w_0\in C$ and $k \in \nset$ such that $\PP_{w_0}(X_k \in B, \sigma_C >​k)>​0$ (which can be easily seen by contradiction). ​+  * This allows to choose $B=A_\eta$ with $\eta$ chosen sufficiently close to $1$ so that $B \cap C=\emptyset$. Then, there exists $w_0\in C$ and $k \in \nset$ such that $\PP_{w_0}(X_k \in B, \sigma_C >​k)>​0$ (which can be easily seen by contradiction). ​
  
 Now, write for any $\beta>​1$, ​ Now, write for any $\beta>​1$, ​
world/non-geometric.txt ยท Last modified: 2024/03/27 17:27 by rdouc