Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:gausslipshitz

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:gausslipshitz [2019/02/16 09:01]
douc [Consequences]
world:gausslipshitz [2022/11/17 17:53]
rdouc [Gaussian concentration inequality for Lipschitz functions]
Line 1: Line 1:
 +{{page>:​defs}}
  
 +{{tag> symmetrisation,​ concentration inequality, Gaussian}}
 +
 +
 +====== Gaussian concentration inequality for Lipschitz functions ======
 + 
 +This is an interesting application of a symmetrisation argument. This article is almost directly taken from [[https://​terrytao.wordpress.com/​2010/​01/​03/​254a-notes-1-concentration-of-measure/​|Terrence Tao's webpage (Theorem 8)]] (see also Theorem 2.1.12 in "​Topics in Random Matrix Theory"​ by Terrence Tao). 
 +
 +<WRAP center round box 80%>
 +__**Theorem**__ ​
 +Let $(X_i)_{i\in [1:n]}$ be iid such that $X_i \sim N(0,​\sigma^2)$ and set $X=(X_1,​\ldots,​X_n)$. Let $F: \rset^n \rightarrow \rset$ be a $1$-Lipschitz function wrt to the euclidian distance $\|\cdot\|$ on $\rset^n$, i.e., $|F(x)-F(y)| \leq \|x-y\|$ for all $x,y \in \rset^n$. Then for every $\lambda>​0$,​
 +\begin{equation} \label{eq:​fond}
 +\PP( |F(X) - \PE[F(X)]| \geq \lambda ) \leq 2 \exp(-2\lambda^2/​(\sigma \pi)^2 )
 +\end{equation}
 +</​WRAP>​
 +
 +==== Proof ====
 +
 +
 +The original argument was given by Maurey and Pisier. We only prove the assertion under the more restrictive assumption $\|\nabla F(x)\|\leq 1$. Let $Y$ an independent copy of $X$, then for every $t>​0$, ​
 +$$
 +\PP( F(X) - \PE[F(Y)]\geq \lambda ) \leq \rme^{-\lambda t} \PE[\rme^{t (F(X)- \PE[F(Y)])}] \leq \rme^{-\lambda t} \PE[\rme^{t (F(X)-F(Y))}]
 +$$
 +where the last inequality follows from the Jensen inequality. We can see that the symmetrisation argument comes from a Jensen inequality and this now allows to use an infinitesimal writing of the difference $F(X) - F(Y)$,  ​
 +$$
 +F(X) - F(Y) = \int_0^{\pi/​2} \frac{d}{d\theta} F(Y \cos \theta + X \sin \theta)\ \rmd\theta=\int_0^{\pi/​2} \nabla F(U_\theta) \cdot V_\theta\ \rmd\theta,
 +$$
 +where $U_\theta=Y \cos \theta + X \sin \theta$ and $V_\theta=-Y \sin \theta + X \cos \theta$ are standard Gaussian r.v. and independent!!!! This is an amazing trick, we don't use the classical interpolation $F(Y(1-t) + X t)$ but a "​polar"​ interpolation and this allows to get the product of uncorrelated terms (and therefore independent since we are in the context of Gaussian vectors). We again make use of Jensen'​s inequality in order to let appear, with a tower property, a term of the form $\PE[\rme^W]$ where $W$ is Gaussian, ​
 +$$
 +\PE[\rme^{t (F(X)-F(Y))}] \leq \frac{2}{\pi} \int_0^{\pi/​2} \PE[ \rme^{\frac{\pi t}{2} \nabla F(U_\theta ) \cdot V_\theta }]\rmd\theta= ​ \frac{2}{\pi} \int_0^{\pi/​2} \PE[\rme^{\frac{(\sigma \pi t)^2}{8} \|\nabla F(U_\theta )\|^2}]\rmd\theta \leq \rme^{\frac{(\sigma \pi t)^2}{8}}.
 +$$
 +The rest of the proof is now standard. This proves that for every $t>0$
 +$$
 +\PP( F(X) - \PE[F(Y)]\geq \lambda ) \leq \rme^{-\lambda t+\frac{(\sigma \pi t)^2}{8}} ​
 +$$
 +Choosing now $t$ such that $\frac{\rmd }{\rmd t} (-\lambda t+\frac{(\sigma \pi t)^2}{8})=0$ yields $t=4\lambda/​(\sigma \pi)^2$ and  ​
 +\begin{equation} \label{eq:​two}
 +\PP( F(X) - \PE[F(Y)]\geq \lambda ) \leq \rme^{-2\lambda^2/​(\sigma \pi )^2}
 +\end{equation}
 +Applying the previous inequality with $F$ replaced by $-F$ and using $\PP( |A|\geq \lambda )=\PP( A\geq \lambda )+\PP( -A\geq \lambda )$ finishes the proof. ​
 +
 +==== Consequences ====
 +
 +We can see  \eqref{eq:​two} as $H\geq G$ where $H$ is the cumulative distribution function of $F(X)-\PE[F(X)]$ and $G(\lambda)=1-\rme^{-2\lambda^2/​(\sigma \pi)^2}$. Then, for all $U \sim \unif[0,​1]$,​ we have 
 +$$
 +H^{\leftarrow}(U) \leq G^{\leftarrow}(U)
 +$$
 +where $H^{\leftarrow}$ is the generalized inverse of the function $H$. Therefore, there exists an exponential random variable $V$ such that 
 +$$
 +F(X)-\PE[F(X)] \leq \sigma \pi \sqrt{\frac{V}{2}}
 +$$
 +We can improve this bound with some more intricate proof, see Thm B.6, Introduction to high dimensional statistics, C. Giraud, which shows that 
 +$$
 +\PP( |F(X) - \PE[F(X)]| \geq \lambda ) \leq 2 \exp(-\lambda^2/​(2\sigma^2) )
 +$$ 
world/gausslipshitz.txt ยท Last modified: 2022/11/17 17:53 by rdouc