Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:robbins_monro

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
world:robbins_monro [2021/03/15 01:20]
rdouc [Statement]
world:robbins_monro [2022/03/16 07:40]
127.0.0.1 external edit
Line 5: Line 5:
  <​WRAP center round box 80%>  <​WRAP center round box 80%>
   * $f$ is a bounded and continuous function ​   * $f$ is a bounded and continuous function ​
-  * $f(x)(x-x_*)>​0$ for all $x\in \Xset$+  * $f(x)(x-x_*)>​0$ for all $x\neq x_* \in \Xset$
 </​WRAP>​ </​WRAP>​
 We assume there exist a Markov kernel $K$ on $\Xset \times ​ \Xsigma$ and a sequence $\seq{\gamma_k}{k\in\nset}$ of real numbers such that We assume there exist a Markov kernel $K$ on $\Xset \times ​ \Xsigma$ and a sequence $\seq{\gamma_k}{k\in\nset}$ of real numbers such that
Line 17: Line 17:
 </​WRAP>​ </​WRAP>​
  
-Let $X_0$ be a random variable such that $\PE[X^2_0]<​\INFTY$. Define iteratively the sequence <color red>​$$X_{n+1}=X_{n}-\gamma_{n+1} U_{n+1}$$</​color>​ where+Let $X_0$ be a random variable such that $\PE[X^2_0]<​\infty$. Define iteratively the sequence <color red>​$$X_{n+1}=X_{n}-\gamma_{n+1} U_{n+1}$$</​color>​ where
 $U_{n+1}|_{\mcf_n}\sim K (X_n,​\cdot)$ and $\mcf_n=\sigma(X_0,​\ldots,​X_n)$. ​ $U_{n+1}|_{\mcf_n}\sim K (X_n,​\cdot)$ and $\mcf_n=\sigma(X_0,​\ldots,​X_n)$. ​
-The aim of this short note is to prove that $X_n \psconv ​0$. We follow a version of the proof proposed by François Roueff. ​+The aim of this short note is to prove that $X_n \psconv ​x_*$. We follow a version of the proof proposed by François Roueff. ​
  
 ====== Proof ====== ====== Proof ======
Line 38: Line 38:
 ==== Convergence of $(X_n-x_*)^2$ ==== ==== Convergence of $(X_n-x_*)^2$ ====
 Considering \eqref{eq:​def:​Sn},​ to obtain the convergence of $(X_n-x_*)^2$,​ we only need to prove that $S_n$ and $\sum_{k=1}^n \gamma_k^2 U_k^2$ converge $\PP$-a.s. as $n$ goes to infinity. ​ Considering \eqref{eq:​def:​Sn},​ to obtain the convergence of $(X_n-x_*)^2$,​ we only need to prove that $S_n$ and $\sum_{k=1}^n \gamma_k^2 U_k^2$ converge $\PP$-a.s. as $n$ goes to infinity. ​
-  - The convergence of $(S_n)$ follows from+  - The convergence of $(S_n)$ follows from (see [[world:​martingale#​submartingale|some results on limits of martingales]])
       * $(S_n)$ is a submartingale since  $\CPE{S_n-S_{n-1}}{\mcf_{n-1}}=2\gamma_n f (X_{n-1}) (X_{n-1}-x_*) \geq 0$       * $(S_n)$ is a submartingale since  $\CPE{S_n-S_{n-1}}{\mcf_{n-1}}=2\gamma_n f (X_{n-1}) (X_{n-1}-x_*) \geq 0$
       * $\sup_n \PE[S_n^+] \leq \PE[(X_0-x_*)^2]+\sum_{k=1}^n \gamma_k^2 \underbrace{\PE[U_k^2]}_{\leq M}<​\infty$.  ​       * $\sup_n \PE[S_n^+] \leq \PE[(X_0-x_*)^2]+\sum_{k=1}^n \gamma_k^2 \underbrace{\PE[U_k^2]}_{\leq M}<​\infty$.  ​
world/robbins_monro.txt · Last modified: 2023/02/10 18:17 by rdouc